

The influence of local and global motion on perceived position Peter J. Kohler, Leif H. Harder and Peter U. Tse Department of Psychological and Brain Sciences, Dartmouth College, NH, USA

BACKGROUND.

- > Motion can shift the perceived position of a briefly presented stationary flash¹.
- > Local motion signals are ambiguous, and must be combined to create unambiguous global motion².
- > Global motion processing takes $\sim 150 \text{ms}^3$.

GOAL

Examine the influence of local and global motion on motion-induced position shifts over time.

EXPERIMENT 1.

Does global motion influence motion-induced position shifts?

STINULUS (see demo).

- > Bistable moving diamond⁴.
- > Dots flashed at motion reversals are shifted in the direction of future motion⁵.
- > Local motion at the dot position does not vary between conditions.

EXPERIMENT 2. Do local and global motion have different effects on position over time? STINULUS. (See demo). RESULTS. Discrete motion leads to mid-trajectory shift⁶.

We tested the position shift at 7 time points. Horizontal occluders \mathbf{O} Shif 5

Vertical motion

Subjects reported horizontal and vertical shifts on separate trials.

> Both local and global motion can influence perceived position.

Vertical global motion

Congruent effects > at almost every time point.

Incongruent effects > begin at 282ms > drop off at 471-565 ms.

CONCLUSIONS.

> both local and global motion contribute to motion-induced shifts in perceived position. > the effects of local and global motion follow distinct time courses as motion unfolds. > this suggests that local and global motion independently influence perceived position.

1. Whitney, D & Cavanagh, P (2000). Nat. Neuroscience 3, 954-959. 4. Lorenceau, J & Shiffrar, M (1992). Vision Res. 32, 263-273. 2. Nakayama, K & Silverman, GH (1988). *Vision Res*. 28, 739-746. 5. Anstis, S & Cavanagh, P (2011). *J. Vis.* 12(8) 7. 3. Pack, CC & Born, RT (2001). Nature 409,1040-1042. 6. Cai, RH & Schlag, J (2001). Invest. Ophth. & Vis. Sci. 42, S711.

Congruent = Consistent with global motion. Incongruent = Orthogonal to global motion.

Horizontal global motion

VISION SCIENCES LABORATORY

Effect of Congruency

