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The ability to handle approximate quantities, or number sense, has
been recurrently linked to mathematical skills, although the nature
of the mechanism allowing to extract numerical information (i.e.,
numerosity) from environmental stimuli is still debated. A set of
objects is indeed not only characterized by its numerosity but also
by other features, such as the summed area occupied by the elements,
which often covary with numerosity. These intrinsic relations be-
tween numerosity and nonnumerical magnitudes led some authors
to argue that numerosity is not independently processed but extract-
ed through a weighting of continuous magnitudes. This view cannot
be properly tested through classic behavioral and neuroimaging
approaches due to these intrinsic correlations. The current study used
a frequency-tagging EEG approach to separately measure responses
to numerosity as well as to continuous magnitudes. We recorded
occipital responses to numerosity, total area, and convex hull changes
but not to density and dot size. We additionally applied a model
predicting primary visual cortex responses to the set of stimuli. The
model output was closely aligned with our electrophysiological data,
since it predicted discrimination only for numerosity, total area, and
convex hull. Our findings thus demonstrate that numerosity can be
independently processed at an early stage in the visual cortex, even
when completely isolated from other magnitude changes. The similar
implicit discrimination for numerosity as for some continuous
magnitudes, which correspond to basic visual percepts, shows that
both can be extracted independently, hence substantiating the
nature of numerosity as a primary feature of the visual scene.

numerical cognition | numerosity extraction | fast periodic visual
stimulation | quantities | nonsymbolic mathematical abilities

When it comes to sets of more than five objects, we can
rapidly figure out an approximation of the number of items,

the numerosity, without counting (1). Humans share with other
animal species an intuition for numerical quantities (2). The na-
ture of the cognitive mechanism behind this ability to approximate
large numerosities is still vividly debated. Researchers largely as-
sume that we possess an approximate number system (ANS), a
specific system that extracts numerosity and builds a mental rep-
resentation of the discrete numerical magnitude from the visual
scene (3). However, a set of objects is characterized not only by
numerosity, but also by several continuous visual features, in-
cluding the individual object sizes and the extent of the set. These
continuous magnitude dimensions are intrinsically related to
numerosity (e.g., a more numerous set naturally occupies a larger
area) and may serve as critical visual cues to access numerosity.
This has led some authors to suggest that there is no specific
cognitive mechanism devoted to number processing and that
numerosity is either processed by general magnitude mechanisms
or emerges from a combination of continuous dimensions (4). No
consensus has been reached thus far on how continuous magni-
tudes contribute to numerosity processing, and a large body of
evidence has demonstrated that they can either facilitate or

interfere with numerosity judgments (5). The current study capi-
talized on a frequency-tagging electrophysiological approach to
isolate numerosity from continuous magnitude dimensions and to
measure the specific cerebral responses driven by both.
The ability to discriminate sets of objects based on numerosity

is thought to be shared with other animal species and to be present
in infants long before the development of language (6–8). There is
substantial behavioral and neuroimaging evidence of this numer-
ical ability. For instance, recent experiments highlighted a spon-
taneous bias in favor of numerosity against continuous magnitudes
when participants had to choose the odd one of three collections
of dots or to categorize collections as “large” or “small” (9, 10): In
both cases, numerosity was spontaneously selected as the decision
criterion. Further, some studies identified populations of neurons
that are specifically tuned to numerosity in the parietal cortex of
humans and monkeys (11, 12). Theoretical models postulate that
the mechanism behind this numerical ability consists in a trans-
formation of sensory input into an abstract estimate of the number
of elements present in a visual scene (2, 13). Nevertheless, existing
empirical evidence of such mechanisms remains problematic due to
the inherent correlation of continuous magnitude changes with
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numerosity changes. Continuous magnitudes rather than numerosity
itself could account for the observed results (14). It is an open
question whether the cognitive system is able to rapidly extract
numerosity information necessary to build up a representation
independent of continuous magnitude variations—and if the sys-
tem has that ability, what happens to the covarying continuous
magnitude information as numerosity is processed? The ANS
theory proposes that all continuous magnitudes are filtered out
during a normalization stage (2), but there is not much evidence
about this filtering stage since continuous magnitudes substantially
affect numerosity judgments (15).
Alternative theories have proposed that numerosity is yoked

to continuous magnitude processing. Among these, a Theory of
Magnitude (ATOM) describes the relationship between contin-
uous magnitudes and numerosity in terms of a unique system
that is capable of representing any kind of discrete and contin-
uous magnitude, including numerosity, time (duration), and space
(extension) (16). Some authors proposed a general sense of
magnitude for both continuous and discrete quantities, in which
size perception is developmentally and evolutionarily more prim-
itive than numerosity, and continuous magnitude plays a key role
in the development of numerical magnitude processing (17, 18).
There is substantial empirical evidence supporting both common
and separate neural areas for numerical and continuous magni-
tudes (e.g., refs. 19–22). Partially overlapping topographical maps
for numerosity and continuous magnitude extraction were iden-
tified within the human parietal cortex, although distinct neural
tuning and organization within the maps suggested distinct pro-
cessing mechanisms (23, 24). Within these overlapping areas, the
right parietal lobule was identified as a likely anatomical location
of the generalized magnitude processing system, according to a
recent functional (fMRI) meta-analysis (25). Further, some au-
thors argued that numerosity is only an abstract cognitive con-
struct resulting from the weighting of all continuous magnitude
features present in the visual stimulus, and that numerosity is
extracted through adaptive recombination of lower-level sensory
information according to the needs of a particular context (4). Such
Sensory Integration (SI) theory assumes that all existing evidence
of numerosity extraction can be explained by cognitive control
mechanisms handling the integration of continuous magnitudes.
The major challenge in disentangling these hypotheses and in

understanding the mechanism of numerosity processing is to
isolate numerosity from continuous magnitudes. Several elegant
ways to control for continuous dimensions have been developed for
behavioral tasks (26–29), but they control for all magnitude changes
across the stimulus set, although each stimulus still contains in-
formation about both numerosity and continuous dimensions. In-
deed, any visual stimulus carries information about both numerosity
and continuous magnitudes. These methods are thus incapable of
disentangling numerosity from nonnumerical magnitude processing
in any strict sense. Importantly, this limitation applies to almost all
evidence provided so far in favor of the ANS theory.
The current study used a frequency-tagging approach, which

consists in recording steady-state visual evoked potentials (SSVEP)
corresponding to the neural responses that are specific to periodic
stimulus changes in a single given dimension (30). SSVEP have
already been successfully recorded in response to numerosity
variations (31), but the present study systematically isolates the
discrimination of numerosity and of continuous magnitudes with a
frequency-tagged experimental paradigm that requires no explicit
task (and thus no decision nor judgment): Visual stimulation
followed an oddball paradigm in which a deviant stimulus was
periodically introduced within a stream of standard stimuli (32).
Critically, we strictly manipulated the nature of the periodic change,
so that only the dimension under consideration periodically fluctu-
ated (33). This manipulation allows for the recording of the neural
responses synchronized to changes in the target dimension, since
only that particular dimension was updated periodically. The current

design allows to track neural discrimination of changes in numerosity
as well as in each of the continuous dimensions, by assigning each
dimension to be the periodic deviant in separate experimental
conditions. If the visual system is sensitive to periodic changes rel-
ative to the fluctuating dimension, the brain should produce re-
sponses synchronized to the deviant frequency and its harmonics
(34). We are thus able to record brain activity specifically related to
the discrimination of numerosity and of each continuous dimension.

Experimental Design
Sequences of dot arrays were presented, updating at a base rate
of 10 Hz (i.e., 10 dot arrays per second). Each presented stimulus
was characterized by five dimensions: number of dots, dot size,
total occupied area, convex hull (i.e., the smallest contour enclosing
all dots of the collection), and density. The dot arrays were made to
vary randomly along all dimensions except one, which changed sys-
tematically at a rate of 1.25 Hz (i.e., one deviation every eight items).
On each 44-s block, the periodic dimension was made to be either
numerosity or one of the four continuous magnitudes (i.e., dot size,
total area, convex hull, and density), see Fig. 1. The ratio by which
the deviant dimension varied from the standards could be 1.1, 1.2,
1.3, 1.4, or 1.5, leading to a design consisting of five dimensions and
five ratios. Each of the 25 conditions was repeated in three blocks.
Additionally, we were interested in assessing whether variability
along each of these dimensions could be expected to elicit responses
at the early stages of the visual processing hierarchy. As the current
electrophysiological recordings did not allow to precisely identify the
exact location where the discrimination occurs, we ran our stimuli
through a relatively simple model of early visual processing that has
previously been shown to predict responses in four topographically
organized areas of visual cortex (35). This provides an a priori,
assumption-free estimate of how visual cortex might respond to our
stimuli. Those estimates are then compared to our electrophysio-
logical results and used to relate the current study to general in-
formation processing capabilities of the human visual system.

Results
To measure the neural responses corresponding to the discrim-
ination of each dimension, we summed the baseline-corrected am-
plitudes of the target frequency (1.25 Hz) and its harmonics up to the
18th (i.e., the highest harmonic with a significant response,Methods),
excluding harmonics of the base rate frequency (i.e., 10 and 20 Hz, as
in previous studies; ref. 36). The Sums of Baseline-corrected Am-
plitudes (SBA) were computed per participant and per condition,
and then averaged at the group level. We found a clear response to
the deviant stimulus at the group level for the largest ratio of three
visual dimensions: Total Area, Convex Hull, and Numerosity (Fig. 2).
The strongest SBA peaks were recorded around medial occipital
electrode Oz, which is consistent with previous results on number
discrimination (32). The mean values of the SBA for the highest ratio
(1.5) averaged across the whole posterior scalp and their corre-
sponding 95% confidence intervals (CI) were, respectively, 0.27 μv
[0.23, 0.31] for Total Area, 0.25 μv [0.21, 0.28] for Numerosity, 0.23 μv
[0.19, 0.27] for Convex Hull, 0.12 μv [0.08, 0.15] for Density, and 0.02
μv [0.00, 0.05] for Item Size. To get a clearer picture of these results,
we considered four posterior regions of interest for further analyses:
the medial occipital, medial occipito-parietal, left occipito-parietal,
and right occipito-parietal regions (Methods).
To evaluate the effect of the ratio manipulation, we constructed

a linear mixed model, with the ratio and the regions as fixed
predictors of the SBA and participants as random factor. Visual
inspection of residual plots did not reveal any obvious deviations
from homoscedasticity or normality. We compared the full model
to two reduced models that did not include the ratio and region
predictor, respectively, using χ2 tests on the log-likelihood values.
For Numerosity, the full model had a better fit than both reduced
models, χ2(1) = 21.60, P < 0.001, and χ2(3) = 10.874, P = 0.01,
respectively without ratio and without regions. A similar result was
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observed for Total Area where the full model had a better fit than
both reduced models, χ2(1) = 23.915, P < 0.001, and χ2(3) =
31.077, P < 0.001, respectively, without ratio and without regions.
We thus observed a significant ratio effect in both conditions. The
strongest responses to periodic changes in Numerosity and in
Total Area were recorded in the medial occipital electrodes. For
Convex Hull, the full model had a better fit than the reduced
models without ratio, χ2(1) = 35.53, P < 0.001, but not better than
the reduced model without regions, χ2(3) = 2.66, P = 0.45. For
Density, the full model had a barely significantly better fit than the
model without ratio, χ2(1) = 4.07, P = 0.04, but not than the one
without regions, χ2(3) = 0.171, P > 0.10. Finally, for Size, the full
model did not have a significantly better fit than either reduced
models, χ2(1) = 0.171, P > 0.10, and χ2(3) = 4.55, P = 0.21.
The linear mixed models thus showed that the brain response

to the periodic change of Numerosity and Total Area was sig-
nificantly affected by both the ratio between deviant and stan-
dard and by the location of the electrodes (Fig. 2). The effect was

largely driven by responses in the medial occipital region: At the
group level, the medial occipital region produced a clear SBA
response to periodic changes in Area when the ratio was 1.3 or
more (mean SBA for ratio 1.3 = 0.43 μv; 95% CI [0.24, 0.62]).
Periodic changes in Numerosity also produced clear SBA re-
sponses in the medial occipital region, although only for the
largest ratio of 1.5 (mean SBA = 0.53 μv; 95% CI [0.30, 0.74]).
Convex Hull and Density both yielded significant effects of ratio,
but not of region, but in both conditions the medial occipital re-
gion produced the strongest responses. For Convex Hull, only
ratio 1.5 reached significance (mean SBA = 0.43 μv; 95% CI [0.19,
0.61]), while ratio 1.4 of Density (mean SBA = 0.19 μv; 95% CI
[0.05, 0.33]) was just at the limit of significance. However, there
was no significant brain response to periodic changes of Item Size
(mean SBA = 0.11 μv; 95% CI [−0.02, 0.25]), consistent with the
lack of region or ratio effect in the linear mixed effect model.
To enrich our interpretation of the electrophysiological mea-

surements, we ran an additional analysis that was aimed at testing

A B

C

Fig. 1. Illustration of the experimental design, example with numerosity as the periodic deviant. (A) Sequences of dot patterns were characterized by five
dimensions: dot size, total area, convex hull, density, and numerosity. Time series of values for the five dimensions during the first 20 s of a trial (200 stimuli)
are plotted. In this example, numerosity is the deviant that varies periodically at 1.25 Hz while the continuous magnitude dimensions vary randomly. (B)
Frequency spectra of the corresponding time series after Fourier transformation. Only the periodic varying dimension, in this example numerosity, produces
clear spectral power at 1.25 Hz and higher harmonics. (C) Illustration of a subset of the stimuli.

Fig. 2. (Upper) Average of the sums of the baseline-corrected amplitudes (SBA, in microvolts) for every condition, as a function of the change ratio. The SBA
is the sum of the target frequency (1.25 Hz) and its harmonics, excluding the base rate (see text). Error bars depict 95% CI. (Lower) Scalp topographies of the
SBAs (in microvolts) for every condition, as a function of the ratio.
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whether a relatively simple model of early visual processing, which
was not designed to account for number processing, would predict
the results we observed. To that end, we applied a second-order
contrast (SOC) model (Methods) to the images used in the ex-
periments. We plot the model output in Fig. 3, along with the
variability of the standard and deviant images on the five dimen-
sions. The model output was closely aligned with our SSVEP data:
For three dimensions that elicited significant synchronized brain
responses, Numerosity, Total Area, and Convex Hull, the deviant
images tended to elicit stronger model responses than standard
images, as evidenced by nonoverlapping boxplots in Fig. 3 (the
median and 25th and 75th percentiles represented by the boxplots
are reported in SI Appendix, Table S2). For Numerosity and Total
Area, this effect was weaker when modeling visual areas beyond
V1, whereas for convex hull, the strongest effect was seen in V4.
For Dot Size and Density, the two dimensions that did not elicit
synchronized brain responses, every deviant image produced
model responses that were within the 25th and 75th percentile of
the standard responses, indicating that the model was unable to
distinguish standard and deviant responses. It is important to note
that the model was designed to capture activity elicited in the visual
cortex by simple gratings, textures, and natural scenes and fit to
fMRI data, a different neuroimaging modality from the one we
used. The fact that the output of such a model is so well-aligned with
our measured data are good news both for the model and for our
approach. The model’s ability to approximate our measured elec-
trophysiological responses to numerosity, despite not being designed
to capture or account for numerosity, is especially compelling, and
may indicate that the initial stages of numerosity processing rely on
relatively simple computations taking place in early visual cortex.

Discussion
The objective of the current study was to isolate and contrast the
specific cerebral responses to changes of numerosity and four con-
tinuous visual magnitudes. We observed clear electrophysiological
responses that were synchronized to the frequency of a periodically
occurring deviant stimulus, when that deviant encompassed a
change of numerosity similarly as for some visual features. These
synchronized responses support the view that the human brain can
spontaneously discriminate periodic changes in numerosity. The
observed effect of region of interest and the results from the model
approach further suggest that this ability is primarily driven in the
occipital cortex. The frequency-tagging approach taken in the
current study allows us to overcome the issue of correlations be-
tween numerosity and continuous magnitudes, which means that
we could choose natural dimensions as a strong comparison point
in terms of low-level changes in visual features. Indeed, we dem-
onstrated that when numerosity was the only parameter varying
periodically without periodic variation of continuous magnitudes at
the sequence level, its changes could still be discriminated as au-
tomatically as changes in Total Area and Convex Hull.
These findings are in line with recent studies that have iden-

tified rapid electrophysiological responses to numerosity (75 ms
after stimulus presentation) (37) and with evidence that encoding
of numerosity occurs very early in the visual processing stream:
Tuning for numerosity has been demonstrated in early visual re-
gions of occipital cortex (V1, V2, and V3) (31, 33, 38, 39). Cru-
cially, as our experimental design ensured that only a single
dimension varied periodically over a given stimulus sequence, the
current observed responses can be uniquely associated with
numerosity, and contributions from any of the continuous dimen-
sions in isolation can be ruled out. It is worth noting that our study
involved passive viewing only. Hence, our findings do not preclude
the existence of later interactions between the dimensions, such as
those that have been recurrently reported behaviorally in non-
symbolic comparison tasks involving decision-making and cognitive
control. The current frequency-tagging paradigm was not designed
to capture the latter kind of processes, nor the relative contribution

of parietal or frontal regions to the subsequent processing stages. It
is thus still possible that a weighting (4) or normalization of the
various magnitude information (2) occurs at later processing stages
while performing a numerosity task (e.g., nonsymbolic estimation
or comparison tasks). Recent studies support the view that such
interactions are deliberate, and strategic, rather than perceptual
(40). In other words, the current results do not support the hy-
pothesis that the number of items in a visual scene is initially
processed through an active weighting of continuous magnitudes
at that early processing stage.
The results of the conditions in which continuous magnitudes

were manipulated revealed synchronized responses that could be
uniquely associated with the total area occupied by the dots and the
extent of the convex hull. On the contrary, no such synchronizations
were observed for periodic variations of density and dot size. This
pattern of results indicates that the brain can spontaneously discrim-
inate total area and convex hull, but not density and dot size: Total
Area and Convex Hull are both directly related to low-level visual
features: Total Area is confounded with stimulus luminance, a pri-
mary property of the visual scene (41) to which the visual system
responds in a nearly veridical manner (42). Convex Hull is con-
founded with the size of the space taken in the visual scene and, thus,
with the width and height of the visual angle sustained by the entire
stimulus, properties that are known to influence the brain response to
the stimulation (43, 44). Human vision thus seems to be provided with
an early discrimination mechanism for numerosity that operates in an
equivalent way to the mechanisms involved with decoding low-level
visual features, suggesting that numerosity may also be considered a
primary visual feature (45). The topological invariance of numerosity
has been proposed as a key visual attribute distinguishing numerosity
from continuous magnitudes (46, 47). This unique aspect of numer-
osity might be key to its utility as a primary feature of visual scenes.
The SOC model was designed to capture activity elicited in

visual cortex by relatively simple image stimuli and fit to fMRI
data. The responses predicted by the model are well-aligned with
our electrophysiological data, so that variability over dimensions
that produced synchronized brain responses also produced sys-
tematically different predicted model responses. This indicates
that the synchronized brain responses could plausibly be elicited by
the mechanisms in early visual cortex that the model was designed
to capture. It is perhaps not surprising that early visual cortex would
be sensitive to Total Area and Convex Hull, as indicated by the
model. However, stimuli that are made to vary along the nume-
rosity, but not the other dimensions, also elicit systematically dif-
ferent predicted model responses. This finding is more remarkable
as the model was not designed to detect that kind of change. It thus
offers support for the idea that numerosity is a primary visual
feature that, at least at initial processing stages, relies on relatively
simple computations taking place in early visual cortex.
It is worth noting that the observed discrepancies across di-

mensions suggests that the observed synchronized electrophysi-
ological responses do not reflect a general mechanism of response
to any periodic deviant, but rather depend critically on the brain’s
sensitivity to the change (34). The results indicate that the brain is
sensitive to Numerosity, Total Area, and Convex Hull, while we
found no evidence of sensitivity to periodic changes in Dot Size or
Density. The lack of a density effect might be due to the range of
number of dots used in the present experiment. Indeed, some
authors have argued that the density of a dot array becomes sa-
lient only when the number of dots is much larger than the range
we used (i.e., over hundreds of dots) (48). According to their
results, electrophysiological responses to density changes would
not occur with arrays with less than 50 dots, which is consistent
with our observations. The lack of a dot size effect could be
explained by attention being allocated to the global visual scene
rather than to its individual parts. The visual system can segment a
scene to extract relevant information, and previous research sug-
gests that there would be no encoding of individual dots but rather
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an efficient general description of the scene (45). Thus, although
we did not observe specific responses to variations in dot size and
density, these properties may be measurable under different ex-
perimental settings, including larger ratios or longer presentation
times, with the latter manipulation possibly allowing for directed
attention toward individual scene parts.
Taken together, the current results provide evidence in favor

of the Visual Number Sense idea proposed by Burr and Ross (49),
which considers numerosity a primary visual property that can be
extracted from the visual scene. Further support comes from re-
cent evidence highlighting a specific neural sensitivity to nume-
rosity very early in the visual stream, which was interpreted as direct
and automatic encoding of numerosity information (37, 39). The
seminal ANS theory proposed that lower-level visual features re-
lated to continuous magnitudes must be neutralized in a so-called
normalization stage, which precedes the extraction of number in an
abstract, modality-free manner (i.e., the “abstract numerosity” as
described by Gebuis; ref. 4). Recent findings of neural sensitivity to
numerosity both in early and late ERP components were inter-
preted as neural evidence of this normalization stage occurring in
primary visual cortex prior to later summation stage (31). The data
presented here can also be considered as evidence of an early
summation stage in primary visual cortex (39). The current results
demonstrate that a specific discrimination based on numerosity and
some continuous magnitudes is possible similarly and very early in
the visual stream. It is important to note that in a natural context,
where the dimensions are not isolated as in the current experi-
mental paradigm and, thus, strongly correlate with each other, early
stage visual discrimination would likely be much stronger. Indeed,
recent neuroimaging evidence supports a numerosity representation
both in parietal and occipital areas, with an increasing sensitivity to
numerosity along the dorsal stream especially when the numerosity
is related to a task (50, 51).

Conclusion. The current study reports isolated measures of the brain’s
ability to detect changes in both numerosity and continuous magni-
tudes, without the confounds that usually arise due to the correlation
between these dimensions. The results show that numerosity can be
rapidly discriminated in the visual stream independently of other vi-
sual features, supporting the hypothesis of an early visual number
sense. We further suggest that numerosity is a primary attribute that
can be directly extracted from the visual scene. Future research is
needed to determine whether the ability to extract numerosity directly
is an innate ability or is learned over the course of visual development.

Methods
Participants. Twenty-five undergraduate students participated in the study.
Volunteers suffering from orwith a history of suffering from any neurological
or neuropsychological disease, from any learning disability such as dyscalculia, or
from any uncorrected visual impairment were not allowed to participate. We
excluded four participants due to the presence of substantial noise in their EEG
signal (e.g., noise due to transpiration or movements). The final sample thus
consisted of 21 participants, with a mean age of 23.5 y (SD = 2.7, 9 females). Due
to the length of the experiment, some participants failed to respond to the color
change task (see below) and were excluded for some of the conditions, resulting
in a final sample of 19 for Area, 18 for Convex hull, 18 for Numerosity, 19 for
Size, and 20 for Density. No participant was excluded for more than two con-
ditions. We followed American Psychological Association (APA) ethical standards
to conduct the present study. The Faculty Ethics Committee approved the
methodology and the implementation of the experiment before the start of
data collection (Comité d’Avis Ethique de la Faculté des Sciences Psychologiques
et de l’Education). All participants provided their written informed consent prior
to taking part in the study. The experiment lasted 2 h in total, and participants
received 20 euros for their participation.

Fig. 3. For each periodic deviant dimension, the graphs depict the re-
sponses predicted by the SOC model in four topographically organized areas
in the human visual cortex (V1 [primary visual cortex], V2, V3, and V4). Each
row represents a dimension assigned as periodic deviant, as indicated on the
left, with each plot describing the set of images associated. The predicted
responses are plotted as percent of the overall average response across all
images (standard and deviant) within each condition. The predicted re-
sponses are the result of passing the stimuli through four different iterations
of the SOC model, using model parameters derived previously by fitting the
model to fMRI BOLD responses in each of the four areas. For every boxplot,

the central mark is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data points not con-
sidered outliers, and the outliers are indicated with dots.
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Fast Periodic Visual Stimulation.
Stimuli. To create the dot arrays, we used a preliminary version of the NASCO
software (52). NASCO is an open and freely usable MATLAB application that
allows the generation of dot arrays while keeping a given dimension constant.
Critically for the purpose of our study, for every condition, we generated 400
standard pictures in which only one dimension (determined by the condition
under consideration) was kept constant while other features stochastically
varied. We then created 100 deviant arrays for each condition with a similar
approach, by using the ratio of the given condition to determine the value of
the only manipulated fluctuating dimension. All pictures were squares of 850 ×
850 pixels. After the creation of the pictures, we generated multiple sequences
of 440 of these (since the whole stimulation sequence had 10 pictures per
second during 44 s), including 385 frequent and 55 deviant stimuli. In order to
statistically verify that stochastic fluctuations related to irrelevant dimensions
were not periodic within these sequences, we computed the Fast-Fourier
Transform (FFT) of the values taken by each dimension over time. We trans-
formed the spectra into Z-scores, and we averaged the values of the deviant
frequency rate and its harmonics up to the seventh (1.25, 2.50, 3.75, 5.00, 6.25,
7.50, 8.75 Hz). We then iteratively selected for each condition one sequence in
which the averaged periodicity of the dimension of interest was larger than
the 99% probability unilateral threshold of a standard normal distribution (i.e.,
2.32), and in which the averaged periodicity of the other four dimensions were
less than this threshold. The exact same sequence was used thrice within a
given condition to avoid any periodic artifact when averaging the repetitions
(see SI Appendix for further details about stimulus construction).
Apparatus. We used MATLAB (The MathWorks) with the Psychophysics Toolbox
extensions (53, 54) to display the stimuli and record behavioral data. The elec-
troencephalography (EEG) recording took place in a shielded Faraday cage (275
cm × 195 cm × 280 cm). Participants were comfortably seated at 1 m from the
screen, with their gaze in front to the center of the screen (24-inch LED monitor,
100-Hz refresh rate, 1-ms response time). Screen resolution was 1,024 × 768
pixels. The order of the conditions during the EEG recording session was
counterbalanced across participants.
Procedure. Participants were instructed to look at the entire screen by keeping
their gaze on a small fixation diamond that was continuously displayed at the
center of the screen. The fixation randomly changed color from blue to red four to
six times during a sequence and participants were instructed to press a buttonwith
their right forefinger each time they detected the color change. Their responses
were recorded to quantify compliance with the instructions. Participants’ mean
response rates to the color change of the fixation diamond was 96%. No partici-
pant missed the color change more than once during a 44-s block. Such high
detection rate indicates that participants followed the instructions and kept their
gaze on the center of the screen during EEG acquisition. Stimuli subtended a
maximal visual angle of 9°. Stimulus presentation followed a sinusoidal contrast
modulation from 0 to 100% (55, 56). The base frequency ratewas 10 Hz, so that 10
stimuli were displayed per second (and consequently each stimulus lasted 100ms in
total from onset to total offset). Every stimulation sequence lasted 48 s, including
44 s of recording and 2 s of fade-in and fade-out, which were not analyzed.

During each sequence, dot arrays entailed one specific feature that was
kept constant, and a periodic deviation from this constant every eight items.
In other words, deviant stimuli were periodically displayed within a stream of
standard dot arrays at the frequency rate of 1.25 Hz (see Fig. 1, and for all
conditions see SI Appendix, Figs. S1–S5). We manipulated two factors: the
nature of the dimension that periodically fluctuated and the ratio of the
fluctuation from the standard to the deviant arrays. As for the dimension,
we manipulated the Number (N) of dots, the individual dot Size (S), the total
Area (A) occupied by the dots, the area of the Convex Hull (CH), and finally
the Density (D) of the array. As for the ratio, we created dot arrays that
deviated from the standard with five different ratios (1.1, 1.2, 1.3, 1.4, and
1.5). The manipulated dimension and the deviation ratio were fixed during a
block. Therefore, by the combination of both factors we obtained 25 dif-
ferent conditions. Each condition was repeated three times, for a total of 75
44-s stimulation sequences. When debriefed at the end of the experiment,

participants reported changes of the dot arrays but no participant noticed
periodic changes in any dimension.
EEG recording. EEG data were acquired at 1,024 Hz using a 64-channel BioSemi
ActiveTwo system (BioSemi B. V.). The electrodes were positioned on the cap
according to the standard 10–20 system locations (for exact position coordinates,
see http://www.biosemi.com). Two additional electrodes, the Common Mode
Sense (CMS) active electrode and the Driven Right Leg passive electrode, were
respectively used as reference and ground electrodes. Offsets of the electrodes,
referenced to the CMS, were held below 40 mV. Eye movements were moni-
tored with four flat-type electrodes; two were placed above and below par-
ticipant’s right eye, the other two were positioned lateral to the external canthi.
Data analyses. Analyses were conducted with the help of Letswave 6 (https://
github.com/NOCIONS/letswave6). Data files were down-sampled from 1,024
Hz to 512 Hz for faster processing. Data were filtered with a four-order band-
pass Butterworth filter (0.1–100 Hz) and rereferenced to the common average.

The fade-in and fade-out periods were excluded from the analyses leading
to the segmentation of an EEG signal of 44 s (corresponding to the display of
440 stimuli). The three repetitions were averaged per condition and per par-
ticipant. A FFT was applied on the signal to extract amplitude spectra for the 64
channels with a frequency resolution (the size of the frequency bins) of 0.016Hz.

Based on the frequency spectra, we computed twomeasures to determine
whether and how the brain specifically responded to the deviant frequency in
the five conditions: Sum of baseline-corrected amplitudes, and Z-scores. The
SBA is expressed in microvolts and can thus quantify changes within the EEG
signal (32, 34). We computed the baseline-corrected amplitudes by subtracting
from the bin of interest (i.e., 1.25 Hz) the mean amplitude of 20 surrounding
frequency bins and the latter’s 20 surrounding bins (10 on each side, excluding
the one immediately adjacent to the bin of interest), which constitutes the
baseline amplitude (57). We calculated similarly the baseline-corrected am-
plitude of the harmonics of the frequency of interest relative to their neigh-
bors (i.e., up the 18th harmonic). Then, we summed the baseline-corrected
amplitudes obtained for the frequency of interest and its harmonics.

We grouped electrodes of interest in four posterior regions of interest for
further analyses: the medial occipital (O1, O2, Oz, Iz), medial occipito-parietal
(Pz, POz, P1, P2, P3, P4, PO3, PO4), left occipito-parietal (P5, P7, P9, PO7), and
right occipito-parietal (P6, P8, P10, PO8) regions (58).

Visual Cortex Response Predictions. We applied a cascaded, feed-forward model
of BOLD responses to visual stimuli, the second-order contrast (SOC) model to the
images used in the conditions with the largest ratio (1.5). This model first passed
the image through a bank of contrast-normalized, localized, V1-like filters, and
then reprocessed the output in a second stage that, among other things, mea-
sured the contrast variability in the output of the first stage (35). The SOC model
has been fit to data for V1, V2, V3, and V4, and is effective at predicting how
these areas respond to simple visual stimuli, including gratings and textures,
while also capturing increased sensitivity to the structure of natural scenes in
extrastriate visual areas. These features make it a reasonable model for esti-
mating the activity that our dot images would elicit in early visual cortex. We
applied the SOCmodel separately to each image, usingmodel parameters for V1,
V2, V3, and V4 provided in the original publication. We then summed the model
output across each image to get a predicted average response of each brain area
to each image update. This allowed us to compare the predicted average re-
sponses to the standard and deviant image updates and use the comparison as
an estimate of how strongly the deviants would be expected to drive synchro-
nized brain responses in early visual cortex, according to the SOC model.

Data availability. Data related to this work are available on the Open Science
Framework (https://osf.io/9z5jb/?view_only=3266699943a54b28aa30cc7ea8177ef3).
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