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Howdoes the brainmediate visual artistic creativity? Here we studied behavioral and neural changes in drawing
and painting students compared to students who did not study art. We investigated three aspects of cognition
vital to many visual artists: creative cognition, perception, and perception-to-action. We found that the art stu-
dents became more creative via the reorganization of prefrontal white matter but did not find any significant
changes in perceptual ability or related neural activity in the art students relative to the control group. Moreover,
the art students improved in their ability to sketch human figures from observation, andmultivariate patterns of
cortical and cerebellar activity evoked by this drawing task became increasingly separable between art and non-
art students. Our findings suggest that the emergence of visual artistic skills is supported by plasticity in neural
pathways that enable creative cognition and mediate perceptuomotor integration.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Art is a complex and uniquely human phenomenon. The creation of
artistic work has historically been a mysterious and poorly understood
process, often even by artists themselves (Stiles and Selz, 2012). How-
ever, according to central tenets of neuroscience, the work of an artist
must be mediated by the brain. How does the brain support the cogni-
tive skills necessary to create art?

Art has appeared inmany forms throughout human history. The qual-
ities that distinguish artisticwork are thus often difficult to define. For ex-
ample, while some trompe l'oeil painters such as William Harnett
(Frankenstein, 1953) attain an astounding ability to recreate visual scenes
accurately, representation for other painters such as abstract expression-
ist Barnett Newman (Shiff, 2004) is less important than the concepts or
processes that their works communicate. Nonetheless, most artists, re-
gardless of their motivation or medium, spend years developing patterns
of thought and behavior that lead ultimately to expression in a work of
art. Here, we focused narrowly on a single type of artwork: representa-
tional, two-dimensional visual depictions created from observation. We
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necessarily ignored many important factors such as social, cultural, and
affective contexts that are vital to the work of many artists (cf. Stiles
and Selz, 2012). No single study can address every factor that influences
artistic skill. However, the results presented here may provide a window
into some of the neural processes that endow humans with a seemingly
limitless ability to create new objects, ideas, and processes.

In the current study we investigated how artistic behaviors are
learned, focusing on representational visual art and on three areas of cog-
nition that are relevant to many visual artists: creative cognition, visual
perception, and perception-to-action (Fig. 1A).We asked how skills asso-
ciated with each of these three cognitive domains change and how the
brain reorganizes as students learn to create visual art. We recruited 35
undergraduate college students for monthly testing; 17 of these partici-
pants took a 3-month-long introductory observational drawing or paint-
ing course offered by the Studio Art Department at Dartmouth College,
while 18 control participants did not study art. All participants attended
monthly MRI scanning sessions. Below we introduce the three areas of
cognition that we studied and their potential relevance to visual art.

Creative cognition

Artists are distinguished by the ability to think in new ways, devel-
oping new patterns of and connections between ideas to imagine and
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Fig. 1. Experimental design. A. Areas of cognition important to the production of represen-
tational visual art: creative cognition, perception, and perception-to-action pathways. B.
Example prompt and participant response from the TTCT. Participants were instructed
to draw something that no one else would think of, to tell as rich and complete a story
as possible, and to give each response a creative title. C. The Craik–O'Brien–Cornsweet il-
lusion, inwhich a dark-to-light gradient heading left of center and a light-to-dark gradient
heading right of center cause a uniform gray rectangle to appear darker on the left side
than on the right side. D. The Müller–Lyer illusion, in which a line segment with outward
facing arrow ends appears longer than an identical-length line segment with inward fac-
ing arrow ends. E. Example stimulus and participant response from the gesture drawing
task. Participants had 30 s to complete a gesture drawing of the observed human figures.
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create artifacts and processes that have never existed previously. The
sources of this creativity are among the least understood and most my-
thologized aspects of art production (Milbrandt and Milbrandt, 2011;
Taylor, 1976). Creative cognition is notoriously difficult to definewithin
a scientific context, partly because creativity can be manifested in myr-
iad domains such as artistic and scientific fields, verbal and visual mo-
dalities, and divergent and convergent thought (Dietrich and Kanso,
2010). Many questions about what makes artists creative remain
open, especially with respect to the brain's role in these creative pro-
cesses. Previous neuroscientific studies have used a range of approaches
to study the neural basis of creativity in artists, but little consensus
about this basis has emerged. For example, Bhattacharya and Petsche
(2005) used EEG to study differences in cortical activity between artists
and non-artists as both produced drawings of their own choice and
found differences in short and long range neural synchronization pat-
terns between the two groups. Kowatari et al. (2009) asked design ex-
perts and novice participants to invent a new type of pen while
undergoing functional MRI (fMRI) scans and found that creative output
was correlated with the degree of dominance of right over left prefron-
tal cortical activity. Limb and Braun (2008) used fMRI to show that jazz
pianists experienced extensive deactivation of prefrontal cortex when
they played improvised compared to over-learned musical pieces.
Solso (2001), on the other hand, found reduced activity in the parietal
cortex in a skilled portrait artist compared to a novice participant as
both produced drawings of faces. While little consensus has emerged
from such studies, the many emerging findings about both artists and
creative cognition more generally have shown that creativity is a com-
plex rather thanmonolithic process and that researchersmust therefore
avoid the tendency to reduce creativity to simple conceptual constructs
(Arden et al., 2010; Dietrich and Kanso, 2010; Hee Kim, 2006). Thus, in
this study we chose assessments of creativity (described below) that
measured many aspects of creative ability.

A recent study by Jung et al. (2010) investigated the relationship be-
tween white matter organization and creative cognitive ability using
diffusion tensor imaging (DTI). They found an inverse correlation in
the frontal lobes between fractional anisotropy (FA; ameasure of the di-
rectionality of water diffusion in white matter) and both divergent
thinking and openness, such thatmore creative individuals asmeasured
by these traits tended to have lower frontal whitematter FA.While FA is
often associated with myelination of axons, several other properties
such as axon count, axon packing, and crossing fibers can affect the an-
isotropy of water diffusion in the brain as well. While the exact neural
correlates of FA are not determined precisely, DTI nonetheless provides
a non-invasivemeans of investigating longitudinal changes in the struc-
ture of white matter. Several recent studies have shown that diffusion
tensor imaging (DTI) is an effective tool for tracking learning-related
changes in the white matter organization of the brain in as little as six
weeks or as long as nine months (May, 2011; Schlegel et al., 2012;
Scholz et al., 2009). Even shorter term changes (in as little as five
days) have been observed in brain structure using other imagingmodal-
ities (Ditye et al., 2013; Driemeyer et al., 2008).

Visual perception

The visual system is organized to recover intrinsic properties of per-
ceived objects such as size and reflectance. It therefore often counteracts
context-dependent aspects of objects such as distance from the observ-
er and ambient luminance (Todorović, 2002). In other words, the brain
constructs our perception of the world not necessarily in accordance
with the physical stimulation, but rather as it infers things to be intrin-
sically. For instance, awhiteflower still appearswhite in a blue-lit room,
even though the flower reflects only blue light in such a room. While
such inferences on thepart of the visual systempermit us to perceive in-
trinsic properties of objects (e.g. size, shape, or pigment), they can also
lead to illusory percepts such as the Craik-O'Brien-Cornsweet andMüll-
er-Lyer illusions (Figs. 1C & D) (Müller-Lyer, 1889; Todorović, 1987).
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One skill acquired by many visual artists is the ability to create pre-
cise, realistic representations of the world. For these representations to
appear realistic, they must reflect accurately the physical, rather than
the inferred, properties of the observed environment. A representation-
al artist may therefore need to counteract these inferences. Otherwise,
the brain's corrections would propagate to the artwork and result in in-
correct depictions of the subject matter (e.g. in a painting of a white
flower in a blue-lit room, the flower would look whiter than in real
life). How do representational artists learn to bypass these seemingly
automatic inferential processes? Do their brains reorganize so as to per-
ceive the true physical properties of stimuli directly, or do artists use
other cognitive strategies such as correcting inaccuracies in an artwork
by comparing the actual stimuluswith an initial attempt at its represen-
tation? Previous studies have presented conflicting findings in this re-
gard. Graham and Meng (2011) reported that professional painters
were less susceptible than non-artists to the Craik–O'Brien–Cornsweet
effect, suggesting that these artists' direct perceptual experience of lu-
minance had changed as a result of training and practice. However,
Perdreau and Cavanagh (2011) found no differences between the abili-
ties of visual artists and non-artists to overcome luminance and size
constancy operations. Drawing ability, rather than artistic ability more
generally, has been shown to affect size constancy processes
(Ostrofsky et al., 2012), integration of object information (Perdreau
and Cavanagh, 2013), and encoding of object structure (Perdreau and
Cavanagh, 2014). Several other scholars have argued both for and
against differences between the perceptual abilities of artists and non-
artists (Fry, 1920; Gombrich, 1960; Kozbelt and Seeley, 2007; Ruskin,
1857; Thouless, 1932). How representational artists can create faithful
depictions of environments that are filtered through perception is
therefore still an open question.

Perception-to-action

No matter the style or medium in which they work, artists must de-
velop the ability to translate thoughts and perceptual experiences into
skilled actions; in this case, drawing and painting. Here we conceive of
perception-to-action as encompassing those cognitive processes that
involve close interactions between perceptual and motor processes,
broadly defined. Relevant perceptual processes could include visual per-
ception of the subject of an art work or of the artist's own hand, or pro-
prioceptive feedback from hand and arm as a drawing is created.
Relevant motor processes could include both the hand and arm move-
ments that create the art work and the eye movements that direct at-
tention over the subject.

Previous studies have investigated how the drawing habits and abil-
ities of artists differ from those of non-artists. Kozbelt (2001) found that
artists' superior skills in perception,motor actions, and perceptuomotor
integration contribute to their advantage in drawing ability. His data in-
dicated additionally that the perceptual advantages among artists had
developed largely to serve drawing skills. Providing further evidence
for a tight integration between perception and action among artists,
Cohen (2005) found that artists shift their eyes between the drawing
and its subject more frequently and that this gaze frequency correlates
with drawing accuracy. He suggested that frequent eye gaze shifts to
update the contents of perception allow artists to reduce the amount
of (possibly inaccurate) information held in working memory. Glazek
(2012) found additionally that artists engage more efficient visual
encoding and motor output mechanisms when drawing. These results
may also relate to Perdreau and Cavanagh's (2011) argument that art-
ists overcome constancy operations essentially by trial and error: draw-
ing a subject and thenmaking corrections after comparing the drawing
to the subject. If this is the case, one aspect of becoming skilled in draw-
ing may be development of the ability to compare drawing and subject
while creating an artwork.

An influential model of the visual system proposes that visual infor-
mation processing can be divided primarily along two neural pathways
or processing streams (Goodale and Milner, 1992; Mishkin and
Ungerleider, 1982). The ventral or vision for perception stream is respon-
sible for recovering information about object identity and tracks
features such as size, shape, and color. The dorsal or vision for action
stream is responsible for spatial awareness and the guidance of move-
ments such as the strokes of a paintbrush. Since artists' perceptual skills
exist to subserve skilledmovements, it is possible that a representation-
al visual artist's training can target the functions of the vision for action
stream over those of the vision for perception stream. If so, finding
evidence of differences between the perceptual skills of artists and
non-artistsmay depend onwhether the tests of those skills target purely
perceptual or perception-to-action pathways.

In the current study we investigated behavioral and neural changes
in creative cognition, visual perception, and perception-to-action as fol-
lows. First, in behavioral sessions at the beginning and end of the study,
participants completed the Torrance Tests of Creative Thinking Figural
Form A (TTCT; Fig. 1B) (Torrance, 1969). The TTCT tests for the ability
to think creatively as defined by several factors such asfluency, original-
ity, abstractness of thought, the ability to depict complex systems com-
pellingly, and the creative use of imagery and language. The test yields a
single composite creativity index (CI) as well as submeasures that sep-
arately assess many aspects of creative ability. Although the painting
and drawing courses completed by the participants were not designed
explicitly to improve the creative qualities measured by the TTCT, we
hypothesized that training in painting and drawing would transfer to
improvements in some or all of these qualities. Because of the finding
of Jung et al. (2010) we hypothesized additionally that any changes
we observed in the creative thinking abilities of our experimental
group would correlate with corresponding changes in prefrontal white
matter organization.

Second, in order to track the development of perceptual abilities in
our visual art students and test whether improvements in these abilities
entail changes in the activity of the brain's perceptual pathways, we ac-
quired a series of functional scans in each session while participants
judged properties of illusory visual stimuli. For illusory stimuli we
used the Craik–O'Brien–Cornsweet illusion (Fig. 1C) and the Müller–
Lyer illusion (Fig. 1D). We chose these two classic visual illusions be-
cause they are cognitively impenetrable. Previous neuroimaging studies
have shown that brain areas implicated in early and mid-level visual
processing underlie the illusory effects (Perna et al., 2005; Plewan
et al., 2012). If perceived strengths and neural correlates of these visual
illusions change as students become artists, it would suggest neural
plasticity at perceptual processing levels. However, no changes in earlier
levels of processing would suggest that artists may have learned to in-
terpret the outputs of early processing differently.

Finally, to assess learning-related changes in perception-to-action
pathways, we acquired a functional scan during each session in which
participantsmade quick, 30 second gesture drawings based on observa-
tion of human figures (Fig. 1E). Gesture drawing is a technique often
used among representational artists to develop more direct translation
of visual observation to hand and arm movements. In creating gesture
drawings, one is often discouraged from devoting attention to the art
work itself, focusing more on translating directly from the perceived
form and gesture to motor actions that faithfully capture those aspects
of the subject on the canvas. This was especially true in the current
study, since participants lay with their heads still in the scanner and
had little opportunity to see the drawings as they were produced. If vi-
sual art training targets perception-to-action, we hypothesized that
changes in neural activity would be observed in the corresponding
perceptuomotor pathways among our art students.

Until recently, plastic reorganization of the brain was thought to
occur mainly during childhood and adolescence, leaving adults with
limited means to learn new skills. Research in the last two decades
has convincingly overturned this belief, revealing a brain that remains
able to reorganize with learning well beyond early developmental pe-
riods (Draganski et al., 2004; Lövdén et al., 2010; May, 2011; Schlegel
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et al., 2012; Scholz et al., 2009; Taubert et al., 2010). Structural changes
in the adult brain have been observedwith interventions lasting as little
as six weeks (Draganski et al., 2004). Our previous work has shown that
novel insights can be gained into the neural processes underlying spe-
cific behaviors by studying how the adult brain changes as those behav-
iors are learned (Schlegel et al., 2012). Thus, studying how the brain
changes as students become artists may reveal insights into how the
brain mediates artistic work.

Materials and methods

Participants

Prior to participating, 45 participants (26 females, aged 19–22 years)
with normal or corrected-to-normal visual acuity gave informed writ-
ten consent according to the guidelines of Dartmouth College's Commit-
tee for the Protection of Human Subjects. Data from10participantswho
withdrew before completion of the studywere discarded before further
analysis. Ourfinal study cohort consisted of an experimental group of 17
undergraduate students (13 females, aged 18–22 years)who completed
a three-month-long course in either introductory drawing or introduc-
tory painting, and a control group of 18 undergraduate students (9 fe-
males, aged 19–22 years) who did not study art. Participants were
recruited for the study during the first week of courses, and we there-
fore did not control the group assignment. Control participants were re-
cruited from a group of students taking an introductory organic
chemistry course. Our strategy was to choose a control group that en-
gaged in an equally intensive course of study, but within a system that
required closed rather than open-ended solutions. While no significant
differences in gender, age, handedness, or grade point average existed
between the two groups (Table S1), we were not able to precisely
match these characteristics because of the nature of the group
assignment.

Drawing & painting courses

Experimental participants completed either an introductory course
in observational drawing, or a similar course in painting for which the
drawing course was a prerequisite. Both courses were 11 week,
undergraduate-level classes offered for credit through the Studio Art
Department at Dartmouth College. Classes met for 4 h each week,
with approximately 15–20 additional hours spent on work per week
outside of class. The purpose of the introductory drawing course was
to develop technical and expressive drawing abilities in terms of line,
scale, space, light, and composition. Work was primarily observational,
although non-observational drawing was also explored. The painting
course further developed the topics from the drawing course, and also
addressed paint application and color theory, mixing, and composition.
Both courses focused additionally on thedevelopment of artistic expres-
sion and on the critical analysis of art works. Detailed course descrip-
tions are provided for both courses as supplemental text.

Procedure

Participation consisted of two half-hour-long behavioral sessions,
one at the beginning and one at the end of the study, during which par-
ticipants completed the Torrance Tests of Creative Thinking (TTCT) Fig-
ural Form A, and four one-hour-long magnetic resonance imaging
(MRI) sessions, one permonth, duringwhichwe collected several func-
tional and structural scans. Functional data were collected as partici-
pants performed two types of behavioral tasks. In the first task,
participantsmade judgments about the physical characteristics of visual
illusion stimuli. In the second task, participants produced gesture draw-
ings based on observation of photographs of humanmodels. These tasks
are described in further detail below. DTI data were collected as partic-
ipants rested but lay still in the scanner.
TTCT task

The TTCT Figural Form A is a timed 30 min, standardized pencil and
paper test of creative thinking. The test consists of three 10 minute ac-
tivities in which participants are instructed to complete partially
drawn figures by thinking of things no one else would think of and by
telling as creative and elaborate a story as possible (e.g. Fig. 1B). Partic-
ipants took the TTCT twice, once at the beginning and once at the end of
the study.

Illusion task

Stimuli were modeled after the Craik–O'Brien–Cornsweet illusion
(Fig. 1C) and the Müller–Lyer illusion (Fig. 1D), with actual differences
introduced in luminance and length, respectively. In a given trial, an il-
lusory stimulus was presented for 1 s and the participant had 2 s from
stimulus onset to indicate which side was either brighter (for the
Craik–O'Brien–Cornsweet or “luminance” task) or longer (for the Müll-
er–Lyer or “length” task) before the next stimulus appeared. The Craik–
O'Brien–Cornsweet illusion stimulus measured 22.72° of visual angle
wide and 17.14° tall, while each center gradient was 3° wide. The Müll-
er–Lyer line segments were oriented vertically and centered on the
screen, with a 4° horizontal separation between them. Line segments
ranged in length from 4° to 8°. The gradient directions and lighter side
for the luminance task and the arrow end direction and longer side for
the length task were counterbalanced across trials, and participants
were not given feedback on their responses. During each session, partic-
ipants completed one fMRI run of each illusion task. A run consisted of
five blocks of 20 trials each, yielding 100 trials per task, participant,
and session. Blocks were interleaved with 12 second rest periods.

Gesture drawing task

Stimuli consisted of grayscale photos of human figures in various
poses (e.g. Fig. 1E). Before the first scan, participants were shown exam-
ples of gesture drawings and instructed that gesture drawing is an activ-
ity in which fluid, continuous strokes are used to build up the form and
movement of the observed figure quickly rather than to capture fine de-
tails. In each trial, a figure was shown to the participant who then had
30 s to complete a gesture drawing of that figure. Participants used a
#2 pencil while lying supine in the scanner and resting a wedge-
shaped drawing pad and paper on their abdomens. Because of their po-
sition and the instruction to keep their head still during scans, partici-
pants had little opportunity to view the gesture drawings as they
were produced. This constraint was not a major concern because, as
discussed above, gesture drawing technique stresses that attention be
maintained on the subject rather than the art work. An experimenter
stood at the side during the scan to provide a new piece of paper in be-
tween drawings. During each session, participants completed one fMRI
gesture drawing run, consisting of 10 drawings interleavedwith 14 sec-
ond rest periods.

MRI acquisition

MRI data were collected using a 3.0-Tesla Philips Achieva Intera
scanner with a 32-channel sense head coil located at the Dartmouth
Brain Imaging Center. T2*-weighted gradient echo planar imaging
scans were used to acquire functional images covering the
whole brain (2000 ms TR, 20 ms TE; 90° flip angle, 240 × 240 mm FOV;
3 × 3 × 3.5 mm3 voxel size; 0 mm slice gap; 35 slices). One T1-weighted
structural image was collected each session using a magnetization-
prepared rapid acquisition gradient echo sequence (8.176 ms TR;
3.72 ms TE; 8° flip angle; 240 × 220 mm2 FOV; 188 sagittal slices;
0.9375 × 0.9375 × 1 mm3 voxel size; 3.12 min acquisition time). One
diffusion-weighted scan was collected each session to acquire diffusion
tensor imaging (DTI) data (32 directions; 1000 s/mm2 b-value; 8.379
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s TR; 73.49 ms TE; 90° flip angle; 224 × 224mm2 FOV; 70 axial slices;
2 × 2 × 2mm3 voxel size; one additional b= 0 s/mm2 image; 2 signal
averages per volume; 10.47 min acquisition time).

MRI data preprocessing

fMRI and DTI data were preprocessed using FSL (Smith et al., 2004).
Functional data were motion and slice scan time corrected, temporally
high pass filtered with a 1/100 Hz cutoff, and spatially smoothed with
a 6 mm full-width-at-half-maximum Gaussian kernel. For each DTI
data set, fractional anisotropy (FA), radial diffusivity (RD), axial diffusiv-
ity (AD), and mean diffusivity (MD) were reconstructed, z-transformed
to reduce the effect of potential unexpected changes in equipment func-
tion over time, and normalized to a standard 2 × 2 × 2mm3 template in
Montreal Neurological Institute (MNI) space via FSL's FNIRT non-linear
registration tool. High-resolution anatomical images were processed
using the FreeSurfer image analysis suite (Dale et al., 1999).

DTI data analyses

Our DTI data analyses followed the procedure from Schlegel et al.
(2012).

Whole-brain GLM
A cross-subject longitudinal GLM analysis using FSL's randomise tool

was performed on the whole-brain FA data (5000 permutations,
within-subject only). Data from all four sessions were included in the
analysis. Only data fromwhite matter were analyzed, as determined in-
dividually for each participant by FreeSurfer's automatic segmentation
algorithm. Additionally, each voxel location in MNI space was only in-
cluded in the analysis if at least 75% of participants had white matter
at that location. Even for locations that passed the 75% threshold, data
from non-white matter at those locationswere excluded from the anal-
ysis. This process allowed for as much of the white matter data as pos-
sible to be included without risking errors due to potential
misregistration between white and non-white matter regions. Included
in the GLM design matrix were predictors to account for existing differ-
ences between participants and predictors for time, separated by group.
t-contrasts were defined to assess group by time interaction effects, and
the resulting statistical maps were threshold-free cluster enhanced and
false discovery rate (FDR) corrected for multiple comparisons (Smith
and Nichols, 2009). The same analysis was also performed for RD, AD,
and MD measures.

Time course
For each participant, the same GLM as in the whole-brain longitudi-

nal DTI analysis was performed with that participant's data left out. The
participant's FA data at voxels with p≤ 0.05 (uncorrected) in the group
by time interaction contrast of this analysis were then averaged to com-
pute one mean FA value for that participant at each time point. Uncor-
rected p values were used in this voxel selection procedure to
maximize the amount of meaningful data included in the time courses,
while excluding the data to be averaged from the voxel selection step
prevented type I errors in the GLM analysis from propagating to the
time courses (i.e. decreasing the slope of the participant group and in-
creasing the slope of the control group artificially). Results for each par-
ticipant were converted to percent change from the t = 0 value of a
best-fit line for that participant's data, and these time courses were
then averaged by group and shown in Fig. 3B.

Structural MRI data analysis

The same whole-brain longitudinal GLM analysis as described for
the DTI data analyses was performed on gray matter thickness data as
reconstructed by FreeSurfer.
TTCT data analyses

Behavioral
The TTCTs were scored independently and blindly according to

standard rating procedures (see Torrance, 1969) by two indepen-
dent raters who also evaluated the gesture drawings (described
below). Inter-rater reliability was excellent (α = 0.94 for the com-
posite creative index [CI]). The group by time interaction term of a
two-way, repeated measures ANOVA evaluated whether the change
in CI over the study differed between the two groups. A factor analysis
was performed on all TTCT subscores including a modification of the
checklist of creative strengths in which the total number of instances of
each checklist itemwas recorded for each test section. Factors were ex-
tracted based on principal components with eigenvalues greater than 1
and varimax rotated (resulting in the five factors shown in Fig. 2B). Ad-
ditional one-tailed, unpaired t-tests evaluated whether each of these
factors increased more in the experimental group than the control
group over the study period. p-Values were FDR corrected for the five
comparisons.

Correlation with DTI data
For each identified TTCT factor, a between-subject correlation analy-

sis was performed comparing the change in factor score between the
two test administrations and the slope of the FA changes calculated
above. For Factor 2, which showed a significant result in this analysis,
the same correlation analyses were performed between FA slope and
the change in the four TTCT subscores that loaded highly (coeffi-
cient≥ 0.4) onto this factor. The resulting p-values were FDR corrected
for multiple comparisons across the four submeasures.

Illusion data analyses

Behavioral
We reconstructed a psychometric curve for each fMRI illusion run by

fitting a Weibull function to participant responses for that run. Re-
sponses were coded for the Craik–O'Brien–Cornsweet luminance task
based on whether the participant chose the side with the lighter or
darker gradient and for the Müller–Lyer length task based on whether
the participant chose the arrow with the outward or inward facing
ends. The t parameter from the Weibull fit gives an estimate of the
point of subjective equality (or the actual luminance or length differ-
ence that led the participant to make each choice with equal probabili-
ty) and hence the strength of the illusory effect. The b parameter from
the fit determines the steepness of the psychometric curve and thus in-
dicates the consistency of the participant's decision criterion. The group
by time interaction terms from longitudinal linear mixedmodel (LMM)
analyses were used to determine whether the trajectory of these two
parameters differed between the two groups over the study period.

fMRI univariate
Awhole-brain longitudinal GLM analysis was carried out for each il-

lusion task to determine whether brain activity changed differentially
between the two groups during the study. Only data from cortical
gray matter and subcortical structures were analyzed, as determined
by FreeSurfer's automatic segmentation algorithm (Dale et al., 1999).
A first-level GLM in FSL's FEAT tool for each participant and session
used a boxcar predictor to model differences in blood-oxygenation
level dependent (BOLD) measurements between task and rest, con-
volved with a double-gamma hemodynamic response function (Smith
et al., 2004). The model parameter estimates from this analysis were
passed to a higher-level longitudinal GLManalysis using FSL's randomise
tool (5000 permutations, within-subject only), like that used for the DTI
analysis described above. t-Contrasts were defined to assess group by
time interaction effects, and the resulting statistical maps were
threshold-free cluster enhanced and FDR corrected for multiple
comparisons.



Fig. 2. Results of creative thinking analysis. Asterisks indicate significance. Error bars indi-
cate standard errors of the mean. A. Art students increased in creative thinking ability
compared to the controls, as measured by the TTCT composite creative index. B. A factor
analysis of the 18 TTCT submeasures revealed five factors that accounted cumulatively
for 59.7% of variance in the participant responses. Factor loadings for each submeasure
are shown, multiplied by 10 for presentation. Loadings with magnitude greater than 0.4
are highlighted and color coded by increasingmagnitude (red to yellow). C. Scores for Fac-
tors 1 through 3 increased in art students relative to controls, indicating that art students
improved in their ability to think divergently, model systems and processes, and portray
imagery. p-Values are FDR corrected for the five comparisons.

445A. Schlegel et al. / NeuroImage 105 (2015) 440–451
fMRI multivariate
Multivariate pattern classifications were carried out using PyMVPA

(Hanke et al., 2009; see Norman et al., 2006 for a detailed introduction
to multivariate classification analysis). For each session we performed
a whole-brain, cross-subject multivariate classification analysis, in
which we trained a machine classifier to distinguish between experi-
mental and control participants based on patterns of brain activity
measured during the gesture drawing task.We used awhole-brain clas-
sification procedure rather than a searchlight analysis for two reasons.
First, searchlight analyses are only sensitive to localized patterns of in-
formation, since each classification is performed only on a localized
cluster of voxels. A whole-brain classification allows patterns to be dis-
tributed across the brain, as might be expected for complex cognitive
processes. Second, searchlight analyses entail a large number of multi-
ple comparisons that can be avoided by performing a single whole-
brain classification. As classification data we used the parameter esti-
mates (i.e. “beta values”) from the first-level univariate analysis de-
scribed above. These parameter estimates represent the change in
brain activity in each voxel while drawing, compared to rest. During
classification, the machine classifier is first trained by providing it with
a set of patterns along with the associated labels (in this case “experi-
mental” or “control”). After training, the classifier is tested by giving it
a new pattern that was held out of the training step and determining
whether it can assign the correct label to that pattern. This training/test-
ing step is repeated in a cross-validation procedure in which each pat-
tern is successively held out of the training data and included in the
testing data. If the classifier can label the test patterns correctly above
chance over all of the cross-validation folds, then information exists
within the patterns that distinguishes the two groups. In a whole-
brain classification, an initial voxel selection procedure is conducted to
determine a subset of voxels in the whole cortex to include in the
classification. Specifically, in each fold of the cross-validation we first
performed a one-way ANOVA between the two groups' parameter
estimates (leaving out data from the held out participant). The 1% of
voxels with the highest F-scores in this ANOVA were then selected for
training and testing. This selection procedure allowed us to reduce the
dimensionality of the multivariate patterns in a principled way while
not biasing the classification results, since the testing data were left
out of the selection mechanism. One limitation of the whole brain
classification selection procedure is that it may discard voxels that still
contain information that distinguishes the two groups, but not enough
to pass the selection threshold (i.e. not showing large enough between
group differences). The selection threshold we chose, however, allowed
us to strike a balance between finding information if it was present and
avoiding overfitting of the data. We used a linear support vector ma-
chine (SVM) as our classification algorithm, and leave-one-subject-out
cross validation (i.e. one participant's datawere held out from the train-
ing set in each cross-validation fold). Because the training datawere un-
balanced between groups, we included an additional step in which the
classifier was trained and tested 10 times for each cross-validation
fold, using a random subset of balanced data for training. The classifier
performance for each fold was then calculated as the average perfor-
mance across those 10 subfolds. Classification accuracies from these
analyses were compared to chance using one-tailed Monte Carlo tests
with 1000 permutations.

Gesture drawing data analyses

Behavioral
All gesture drawings were digitized and scored independently and

blindly by two trained raters. One rater was a visual artist who was
not familiar with the participants' artwork and the other was a research
assistant who was trained by the first rater. The score for each drawing
was an integer between 1 (lowest quality) and 10 (highest quality),
based on an assessment of line quality, resemblance to the figure, and
expressiveness of the depicted gestures. The inter-rater reliability was
excellent (α = 0.82). The group by time interaction effect from an
LMM analysis was used to determine whether the change in these rat-
ings differed between the two groups over the study period.

fMRI
To evaluate whether differences in head movement could have led

to our observed effects, we conducted two-tailed, unpaired t-tests
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between the two groups for each session using the per-run mean rela-
tive displacement as reported by FSL's MCFLIRT tool. Univariate and
multivariate analyses were carried out on the gesture drawing fMRI
data as in the illusion analyses described above. To confirm that the
above-chance multivariate classification accuracies observed were not
due to gross BOLD level differences between the two groups, an addi-
tional higher-level univariate whole-brain GLM analysis was performed
for each session using randomise (5000 permutations, threshold-free
cluster enhanced and FDR corrected for multiple comparisons), with t-
contrasts defined to evaluate between-group BOLD differences. As an
additional control to confirm that the effects we observed were due to
fine-scale patterns of activity, the same multivariate analysis was per-
formed using the mean pattern values as samples rather than the pat-
terns themselves.

Results

Creative cognition

In behavioral sessions at the beginning and end of the three month
study period, participants completed the TTCT Figural Form A, a test of
conceptual creativity. All tests were scored independently and blindly
by two trained raters. The inter-rater reliability was excellent (α =
0.94). For each participant, we calculated the change between the two
sessions in the composite creative index (CI) given by the TTCT
(Fig. 2A). A two-way, repeated measures ANOVA comparing the abso-
lute TTCT CI scores showed a significant interaction between group
and time, indicating that the art students' creative thinking ability im-
proved significantly compared to control participants during the study
(F(1,32) = 4.47, p = 0.0423). Note that differences between the two
groups' CI measures existed at the first session (t(32) = −3.85, p b

0.001; see Table S2). Because creativity is a complex trait (Dietrich
andKanso, 2010; HeeKim, 2006), reducing creative cognition to a single
quantity such as CI would limit our understanding of the changes that
occurred. CI is actually derived from 18 different submeasures of crea-
tivity (see Fig. 2B), so we performed a factor analysis on these
submeasures in order to extractmultiple dimensions alongwhich to ex-
amine the changes that occurred among our participants. This analysis
yielded five factors that together explained 59.7% of the variance in
the TTCT data (Fig. 2B). The submeasures fluency, originality, breaking
boundaries, elaboration, and resisting premature closure loaded highly
onto Factor 1. These submeasures all target divergent thinking, defined
as the ability to producemany (fluency, elaboration) original (originality,
breaking boundaries, resisting premature closure) solutions to a problem
(Guilford, 1967). Storytelling articulateness, synthesis of figures, depicting
movement or action, and emotional expressiveness loaded highly onto
Factor 2. These submeasures all required the modeling of a system or
process (story narratives, the continuation of a theme over multiple
panels, movements and actions, and emotional states). Richness of imag-
ery, colorfulness of imagery, and elaboration loaded highly onto Factor 3
and shared a common themeof requiring the depiction of rich, complex,
effective imagery. Expressiveness of titles, abstractness of titles, and humor
loadedhighly onto Factor 4,with the common themeof involving verbal
creativity. And originality and synthesis of lines loaded highly onto Factor
5, with no discernible interpretation.

We calculated the change in each of these five factor scores for each
participant and performed one-tailed, unpaired t-tests between the ex-
perimental and control groups to determinewhich factorswere respon-
sible for the improvements in creative thinking among the art students.
The results of this analysis showed that art students improved over con-
trols in the creative qualities captured by Factors 1, 2, and 3 (divergent
thinking, modeling of systems and processes, and imagery; Fig. 2C;
Table S3). Factors 4 and 5 showed no significant changes between the
two participant groups.

In order to assesswhether these improvements in creative ability re-
lated to changes in white matter structure, we first performed a whole-
brain (white matter only), permutation-based longitudinal GLM analy-
sis on the Fisher's Z transformed fractional anisotropy (FA) values de-
rived from the DTI scans collected for each participant and session. FA
quantifies the degree to which the diffusion of water is biased in partic-
ular directions and is associatedwith variations in axon count and diam-
eter, density of axonal packing, myelination, and the coherence of axon
fiber bundles (Beaulieu, 2011). This analysis revealed bilateral, prefron-
tal white matter clusters in which FA decreased in art students relative
to controls over the course of the study (Fig. 3A; all ps FDR corrected for
multiple comparisons). No other significant effects of training were
found (no voxels were significant after FDR correction) when the
same analysis was applied to radial diffusivity (amount of diffusion per-
pendicular to the principal axis), axial diffusivity (amount of diffusion
parallel to the principal axis), mean diffusivity (mean amount of diffu-
sion), or cortical gray matter thickness instead of FA.

To confirm that the clusters identified in the longitudinal FA analysis
were associated with absolute decreases in FA in the art students rather
than increases in FA in the control group, we calculated the mean per-
cent change in FA within these clusters for each participant and session
in both groups. However, calculating FA time courses directly from the
voxels that reached significance in the longitudinal analysis would de-
crease the slope of the experimental group's time course and increase
the slope of the control group's time course artificially due to noise-
induced false positives in the whole-brain analysis. In order to prevent
these false-positives from affecting the result, for each participant we
calculated themean FA percent change at each time point only in voxels
that were significant in the same longitudinal GLM analysis conducted
with that participant's data left out (cf. Schlegel et al., 2012). An LMM
analysis of these FA change time courses revealed that art students ex-
perienced a progressive decrease in FA in bilateral prefrontalwhitemat-
ter (group by time interaction term t = −2.41, p = 0.016; Fig. 3B).

To evaluate whether a relationship existed between the visual art
students' decreases in prefrontal FA and increases in creative ability,
we performed correlation analyses between the FA percent change cal-
culations and the changes in each factor score between the two admin-
istrations of the TTCT,with results shown in Fig. 4A. After FDR correction
formultiple comparisons across thefive factors, only changes in Factor 2
showed a significant inverse correlationwith FA percent change. There-
fore, decreases in FA in prefrontalwhitematterwere associatedwith in-
creases in the ability to model systems and processes creatively.
Additional correlation analyses with the four TTCT submeasures that
loadedhighly onto Factor 2 revealed that changes in three of these– sto-
rytelling articulateness, portraying movement or action, and emotional
expressiveness – showed an inverse relationship with changes in pre-
frontal white matter FA (Fig. 4B; all ps FDR corrected for multiple com-
parisons across the four submeasures). Changes in the fourth
submeasure – synthesis of figures – showed no significant correlation
with changes in prefrontal FA.

Visual perception

During each scanning session, participants completed two block-
design runs in which they made judgments about two types of illusory
visual stimuli. In the first “luminance” run, stimuli were based on the
Craik–O'Brien–Cornsweet illusion (Fig. 1C). In this illusion, a dark-to-
light gradient and a light-to-dark gradient heading in opposite direc-
tions from the center of a uniform gray rectangle cause the rectangle
to appear darker on one side than the other. We introduced actual dif-
ferences in the luminance between the two sides of the rectangle and
asked participants to judge which side was lighter. In the second
“length” run, stimuli were based on the Müller–Lyer illusion (Fig. 1D),
in which a line segmentwith outward facing arrow ends appears longer
than an identical line segmentwith inward facing arrow ends.We intro-
duced actual differences in the length of the two line segments and
asked participants to judgewhich line segmentwas longer.We then es-
timated psychometric response curves for each task, session, and



Fig. 3. Results of longitudinal analysis of white matter structure. Error bars indicate standard errors of the mean. A. Voxels that showed a progressive decrease in Fisher's Z transformed
fractional anisotropy (FA) in art students relative to controls, shown within a glass brain in MNI space (p≤ 0.05, FDR corrected for multiple comparisons). All voxels are in white matter,
and themajority of voxels arewithin the frontal lobe. B. Time course of FA in significant voxels from the analysis in panel A. The art students' prefrontal FA decreased progressively over the
study period.
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participant in order to assess a) the point of subjective equality and thus
strength of the illusory effect and b) the steepness of the psychometric
curve and thus the consistency of the participants' decision criteria.
Using these data, we performed an LMM analysis to evaluate whether
either measure changed differentially between the two groups during
the study and found no effect in either measure or task (Fig. S1 &
Table S4; all ps N 0.05, uncorrected). Although we found no enhance-
ment in perceptual ability in the experimental group, wewere still curi-
ous whether training would lead to differences in brain activity while
making perceptual judgments. To address this question, we first per-
formedwhole-brain univariate longitudinal analyses on the BOLDmea-
surements from each of the illusion tasks. For each task we used a
permutation-based GLM with t-contrasts defined to assess group by
time interactions in BOLD activity, and found no significant effects for ei-
ther task (all ps N 0.05, FDR corrected for multiple comparisons). While
there were no univariate BOLD differences between the groups, it is still
possible that differences in more fine-grained patterns of activity arose
between the groups as a result of the art students' training. To assess
this possibility, we performed a whole-brain multivariate classification
analysis for each session and illusion task in which we trained a linear
SVM to classify between the experimental and control groups based
on patterns of BOLD activity (Norman et al., 2006). If pattern level differ-
ences did arise as the art students learned, we would expect classifica-
tion accuracy to increase progressively across the sessions. In order to
reduce the dimensionality of the classification patterns, we used an ini-
tial voxel selection procedure to choose the 1% of voxels that showed
the highest F-scores in a one-way ANOVA between the two groups' pa-
rameter estimates in a GLM contrast of task vs. rest, excluding the cross-
validation holdout sample. None of these classification analyses
achieved accuracies significantly above chance (one-tailed Monte
Carlo test, Fig. S2& Table S5; all ps N 0.05, uncorrected). The lack of effect
in any of these analyses supports our behavioralfinding that no changes
occurred between the two groups in these tasks and suggests that the
art training did not lead to changes in perceptual skill or strategy in
the perceptual judgment tests that we used.

Perception-to-action

In each scanning session, participants also completed one block-
design run in which they created 30 second gesture drawings while ob-
serving grayscale images of human figures in various poses (Fig. 1E).
Each drawing was scored independently and blindly by two trained
raters based on an assessment of line quality, resemblance to the ob-
served figure, and recognizability and expressiveness of the depicted
gestures. The inter-rater reliability was excellent (α = 0.82). The
drawing ratings were averaged for each participant and session. A
two-tailed, unpaired t-test found no significant difference between the
two groups' drawing skills in the first session (t(33) = 1.56, p =
0.128). However, an LMM analysis performed on these mean ratings
confirmed that the art students improved over time in gesture drawing
ability relative to the controls (group by time interaction t = 3.06, p =
0.003; Fig. 5A).

Thus, the art students improved in both creative cognitive ability and
in technical skills related to gesture drawing. To evaluate whether these
two areas of improvement were related, we performed a correlation
analysis between the change in TTCT CI between our two test adminis-
trations and the slope of our experimental participants' gesture drawing
ability over the four neuroimaging sessions. We found no significant re-
lationship between change in creativity and change in gesture drawing
ability (r(14) = 0.0606, p = 0.412). This null finding underscores the
separation between creative and technical abilities and themultifaceted
nature of the training program undertaken by the art students.

Next, we asked whether the experimental group's enhancement in
drawing ability tracked changes in gesture drawing related brain activ-
ity over the course of the study. To control for the possibility that differ-
ences in drawing-induced head movements between the two groups
could have led to differences in BOLD measurements, we performed
per-session two-tailed, unpaired t-tests on our fMRI motion correction
mean relative displacement measurements. During no session was
there a significant difference in head movement between the two
groups (all ps N 0.05, uncorrected; Table S6). We performed whole-
brain univariate longitudinal and whole-brain multivariate cross-
subject classification analyses as described above for the illusion tasks.
As in the illusion tasks, no significant univariate differences in brain ac-
tivity developed over time between the two groups (all ps N 0.05, FDR
corrected formultiple comparisons). This suggests that nomean activity
differences between participant groups developed over the course of
the study, as might be expected if, for instance, art students drew
more vigorously as they underwent training. However, we did find
that the SVM classifier in our whole-brain multivariate analysis distin-
guished more accurately between art students and controls based on
drawing-related brain activity as the study progressed (Fig. 5B;
Table S7). Initially, the classifier failed to distinguish significantly be-
tween the groups (p=0.249 in a one-tailedMonte Carlo test compared
to chance), but by the endof the study the classifier achieved 82.9% clas-
sification accuracy (p = 0.002 in the same test). To determine which
areas of the brain showed patterns of activity that supported the classi-
fication between art students and controls,we visualized the voxels that
were selected by our voxel selection procedure in at least 50% of classi-
fication folds (Fig. 5C). Although clusters of voxels were selected
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Fig. 4. Results of correlation analysis between changes in white matter organization and
changes in creative thinking. A. Correlations between changes in factor scores (Fig. 2)
and changes inprefrontalwhitematter FA (Fig. 3). Changes in Factor 2 inversely correlated
with changes inprefrontal FA. All ps are FDR corrected for thefive comparisons. B. Changes
in three of the four TTCT submeasures that loaded highly onto Factor 2 also showed an in-
verse correlation with changes in prefrontal FA. All ps are FDR corrected for the four
comparisons.
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throughout the brain, with some clusters being chosen presumably due
to noise, the largest cluster selected in eachmonth occurred consistent-
ly in the right hemisphere of the cerebellum. Buckner et al. (2011) dem-
onstrated previously that regions of the cerebellum overlapping with
those found in the present analysis project to the hand and arm regions
of left primary motor cortex and are involved in proprioceptive feed-
back. Miall et al. (2001) found evidence that similarly overlapping re-
gions are responsible for coordinating eye and hand movements.
Subsequentwork has confirmed their findings and found that these cer-
ebellar regions change with visuomotor task learning (Floyer-Lea and
Matthews, 2004; Maquet and Schwartz, 2003). Interestingly, the selec-
tion procedure chose clusters of voxels consistently in the left motor
cortex as well (see Fig. 5C). These chosen voxel clusters suggest that
the classification analysis picked up on patterns of complex hand- and
arm-related motor activity. To confirm that these significant classifica-
tions did not occur due to gross BOLD level differences in activity
between the groups, for each session we performed a whole-brain uni-
variate GLM analysis to assess differences in brain activity between art
students and controls. No voxels in any of these analyses reached signif-
icance (all ps N 0.05, FDR corrected for multiple comparisons). As a fur-
ther control to test whether mean activity levels or fine grained spatial
patterns of information were responsible for the significant classifica-
tion result, we tested our classifier again, this time using the mean
value of each pattern rather than the pattern itself. None of these classi-
fications achieved accuracies significantly greater than chance (all ps N
0.05, uncorrected). Thus, fine-scale patterns of gesture drawing related
neural activity in the cerebellum and cortex increasingly differentiated
art students from controls during the course of the study, while overall
neural activity levels remained the same. These results suggest that our
participants' training in visual art entailed a reorganization of fine scale
functions in these areas.

Discussion

Herewe show that the brains of young adults reorganize as they learn
to create visual art. Our controlled, longitudinal design involving training
over three months allowed us to rule out possible confounding effects of
normal aging andmaturation aswell as differences inmotivation and ini-
tial expertise levels between the experimental and control groups.Wedid
not find any improvements in the art students' purely perceptual skills or
related brain activity relative to a control group of students who did not
study art. We did, however, find that the art students improved in the
ability to quickly translate observations of human figures into gesture
drawings and that fine-grained patterns of drawing-related neural activ-
ity in the cerebellum and cerebral cortex increasingly differentiated the
art students from the control groupover the course of the study. Thisfind-
ing complements a recent correlational study by Chamberlain et al.
(2014) showing that gray matter density in left anterior cerebellum and
rightmedial frontal gyrus is higher in individuals who have trained in ob-
servational drawing. From their finding, it was concluded that observa-
tional drawing ability depends on differences in structural organization
related to fine motor control in these areas. However, we did not find
that gray matter thickness changed as a function of training in these or
any other cortical areas. There are many possible interpretations of this
discrepancy, among them that Chamberlain and colleagues' cross-
sectional design could have found pre-existing differences in gray matter
organization that determined innate potentialities for differences in
drawing ability. Interestingly, the art students in our study also improved
inmeasures of creative thinking, specifically in their ability to think diver-
gently, model systems and processes, and use imagery. Increases in their
ability to model systems and processes creatively correlated with de-
creases in the fractional anisotropy (FA) of prefrontal white matter. Con-
sistent with a previous study that found creative ability to be negatively
correlated with prefrontal white matter FA (Jung et al., 2010), our results
suggest that changes in prefrontal whitematter FAmay underlie the pro-
cesses bywhich art training leads to increased creative ability. The lack of
correlation between our observed improvements in TTCT scores and ges-
ture drawing ability supports the view that artistic training is a multifac-
eted process involving the development of both creative cognitive and
technical skills.

Our results are also consistent with models that attribute improve-
ments in representational artists' skills to their ability to translate percep-
tion into creative action rather than to perceive the world differently (cf.
Gombrich, 1960). Like Perdreau and Cavanagh (2011), we found no spe-
cial ability among artists to extract veridical properties of the physical en-
vironment through purely perceptual processes. It should be noted,
however, that both our study and that of Perdreau and Cavanagh tested
a specific subset of perceptual abilities; it is possible that other tests
could have revealed changes in perceptual ability that our studies were
unable to observe. We did, nonetheless, find that art students and non-
artist controls became progressively more distinguishable via drawing-
related patterns of neural activity in regions of the cerebellum and

image of Fig.�4


Fig. 5.Results of the gesture drawing analysis. Error bars indicate standard errors of themean. A. A longitudinal LMManalysis revealed that art students improved progressively in gesture
drawing ability relative to controls over the four sessions of the study. B. A whole-brainmultivariate between-group linear SVM classification analysis based on patterns of gesture draw-
ing-related brain activity improved progressively in its ability to distinguish art students from controls. Plot shows classification accuracy over time. Initially, the classifier could not dis-
tinguish art students from controls. By the end of the study, the classifier could distinguish between the groups with 82.9% accuracy (#: p ≤ 0.1, **: p ≤ 0.01). C. Voxels selected in each
session by the analysis in panel B to be included in the classification patterns, in MNI space. Voxels are included in these plots if they were selected in at least 50% of the cross-validation
folds. The largest cluster in each session is colored green. In each session, this cluster is in the area of the right anterior lobe of the cerebellum that projects to the hand and arm regions of
the left motor cortex.
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motor cortex that have been shown previously to mediate fine motor
control, proprioceptive feedback, and coordination between eye and
handmovements, and are likely involved innon-motor cognitive process-
es as well (Buckner, 2013; Floyer-Lea and Matthews, 2004; Maquet and
Schwartz, 2003; Miall et al., 2001). Thus, our findings provide evidence
that visual art training changes neural processing in regions that mediate
integration between perception and action. These results are consistent
with the possibility that differences in at least some representational
artist's perceptual abilities may only become apparent when coupled
with action, such as the skilled strokes of a paintbrush or the building
up of a work of art over time through continuous comparison between
what is observed and what is produced. In line with this view, Kozbelt
(2001) showed that artists were better at several perceptual tasks but
also that these advantages had developed largely to support drawing
skills. Future research could help resolve these issues by examining
explicitly the source of representational artists' increased accuracy in
creating art works from observation.

The prefrontal cortex is associated withmany complex behaviors that
involve long-termgoalmaking andplanning (Miller et al., 2002; Tanji and
Hoshi, 2001), generating novel and flexible rules (Rougier et al., 2005),
and imagining future events (Addis et al., 2007), among other abilities.
Common to many of these skills is the ability to represent complex pro-
cesses that do not currently and may never exist in the immediate exter-
nal environment (Frick et al., 2014). The prefrontal cortex therefore likely
plays an important role in creative behavior and especially the creative
work of an artist, which requires the flexible development of novel and
complex thoughts, processes, and objects. Indeed, Jung et al. (2010)
used DTI to find that more creative individuals exhibited lower FA in pre-
frontal white matter tracts. However, the causal inferences that can be
made from their cross-sectional design are limited. While their results
are consistent with our findings, our longitudinal design provides addi-
tional evidence that creative cognition can improve with training on a
time scale of three months and that prefrontal white matter reorganizes
as participants become more able to think creatively.

It is worth noting that DTI measures water diffusion and so provides
only an indirectmeasure ofwhitematter organization. The precisemicro-
structural correlates of FA are generally difficult to elucidate, although FA
is associatedwith several properties of individual axons and axonbundles
(Beaulieu, 2011). As creative thought often requires forming many con-
nections between disparate concepts, one possibility for the effects we
observed is that improvements in creative thinking are associated with
an increase in the complexity of axonal packing (i.e. a more complex
pattern of connectivity) in the frontal lobes. It is also possible that axonal
demyelination played a role. Evidence has been found of experience-
dependentmyelination of axons inmice (Demerens et al., 1996), but a de-
crease in FA such as observed in the present study would be associated
with decreases in axonal myelination and would require that previously
unobserved learning-induced demyelination processes exist in the adult
human brain. To speculate, this demyelination could occur as art students
developmore efficient processing pathways (Solso, 2001) or asmore cre-
ative individuals learn to avoid use of frontal inhibitory circuits. There is
evidence that creative activity involves the inhibition of prefrontal activity
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(Limb and Braun, 2008). Alternatively, development of the glial support
network resulting from increased use of the white matter tracts we iden-
tified (e.g. to actively direct creative thought) could have led to a more
complex extra-axonal environment and thus decreased FA. For instance,
oligodendrocytes extend processes that wrap myelin sheaths around
axons in an activity-dependent manner (Barres and Raff, 1993;
Demerens et al., 1996). While increases in myelination may increase FA,
extension of the orthogonally-oriented processes of oligodendrocytes
might randomize water diffusion and thereby lower FA. Evidence exists
that glial cells are modified by neuronal activity (Barres and Raff, 1993;
Ishibashi et al., 2006), but we are not aware of direct evidence that
these changes can affect FA. Future work that elucidates the cellular
basis of learning-induced changes in white matter organization could
shed further light on interpreting the results presented here.

How does the human brain mediate complex, creative processes
such as the construction of representational works of visual art? An-
swers to this and related questions will not only illuminate the artistic
process itself but could also lead to a more general understanding of
the flexible behaviors that set humans apart as a species. An artist's
work is not an innate skill and so must be developed through study
and practice. The present study reveals that, at least in some cases, artis-
tic development is a complex process involving changes in behavior
along with the reorganization of both the structure and function of the
brain.Whilewe documented changes in specific aspects of creative cog-
nition and in the integration of perception and action, future research in
different artistic disciplines and among different populations will un-
doubtedly reveal further complexity in the creative learning process.
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