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The conscious manipulation of mental representations is central to
many creative and uniquely human abilities. How does the human
brain mediate such flexible mental operations? Here, multivariate
pattern analysis of functional MRI data reveals a widespread
neural network that performs specific mental manipulations on
the contents of visual imagery. Evolving patterns of neural activity
within this mental workspace track the sequence of informational
transformations carried out by these manipulations. The network
switches between distinct connectivity profiles as representations
are maintained or manipulated.
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Albert Einstein described the elements of his scientific
thought as “certain signs and more or less clear images

which can be ‘voluntarily’ reproduced or combined” (1). Creative
thought in science as well as in other domains such as the visual
arts, mathematics, music, and dance requires the capacity to
manipulate mental representations flexibly. Cognitive scientists
refer to this capacity as a “mental workspace” and suggest that it
is a key function of consciousness (2) involving the distribution of
information among widespread, specialized subdomains (3).
How does the human brain mediate these flexible mental

operations? Behavioral studies of the mental workspace, such as
Shepard and Metzler’s work on mental rotation (4), have found
that many mental operations closely resemble their corre-
sponding physical operations. This finding supports the view that
the mental workspace can simulate the physical world. Recent
work in neuroscience has focused on mental representations
instead of operations, showing that the contents of visual per-
ception (5), visual imagery (6), and even dreams (7) can be
decoded from activity in visual cortex. These results suggest that
the same regions that mediate representations in sensory per-
ception also are involved in mental imagery. However, how the
mind can manipulate these representations remains unknown.
Many studies have found increased activity in frontal and pari-
etal regions associated with a range of high-level cognitive abil-
ities (8, 9) including mental rotation (10), analogical reasoning
(11), working memory (12), and fluid intelligence (13). Together,
these findings suggest that a frontoparietal network may form the
core of the mental workspace. We therefore hypothesized that
operations on visual representations in the mental workspace are
realized through the coordinated activity of a distributed net-
work of regions that spans at least the frontal, parietal, and oc-
cipital cortices. A strong test of this hypothesis would be to ask
whether patterns of neural activity in these regions contain in-
formation about specific mental operations and whether these
patterns evolve over time as mental representations are
manipulated.
In the present study, we tested this hypothesis by asking 15

participants to engage in either maintenance or manipulation of
visual imagery while we collected functional MRI (fMRI)
measurements of their neural activity. As stimuli, we developed
100 abstract parts that could be combined into 2 × 2 figures (Fig.
1 A and C). In a series of trials, participants mentally maintained
a set of parts or a whole figure, mentally constructed a set of four

parts into a figure, or mentally deconstructed a figure into its
four parts (Fig. 1B). Stimuli were presented briefly at the be-
ginning of each trial, followed by a task prompt and a 6-s delay
during which the participant performed the indicated mental
operation. At the end of the delay, the target output of the op-
eration was presented along with three similar distractors, and
the participant indicated the correct target (Fig. 1D). Adjusting
the complexity of the stimuli allowed us to equate for task dif-
ficulty by maintaining an accuracy of two out of three correct
responses for each participant in each of the four conditions
(chance would be 1 out of 4 correct; Fig. 1E).

Results
As an initial procedure for selecting regions of interest (ROI) on
the fMRI blood oxygenation level-dependent (BOLD) data, we
carried out a whole-brain univariate general linear model
(GLM) analysis to identify regions in which neural activity levels
differed between mental manipulation (construct parts or de-
construct figure) and mental maintenance (maintain parts or
maintain figure) conditions. This analysis revealed 11 bilateral
cortical and subcortical ROIs (Fig. 2), suggesting that a wide-
spread network mediates the manipulation tasks. All but two of
the ROIs showed greater activation in manipulation than in
maintenance conditions; the exceptions were the medial tem-
poral lobe (MTL) and medial frontal cortex. In a separate con-
trol GLM analysis, we evaluated whether any regions showed
differences in activity between the two manipulation conditions.
No voxels were significant in this analysis, suggesting that overall
activity levels were well matched between the manipulation
tasks. We did not see a univariate effect in occipital cortex. This
result is expected, because visual stimuli were equated across the
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four conditions. However, because we hypothesized that visual
cortex plays a role in mediating operations on visual imagery, we
included an anatomically defined occipital mask in our set of
ROIs. Thus we had 12 ROIs to investigate for informational
content relevant to the mental operations.
We then attempted to decode the particular mental operations

performed by participants based on spatiotemporal patterns of
BOLD responses in each of these 12 ROIs. We carried out
a multivariate pattern-classification analysis (5) within each ROI.
In this analysis, a classifier algorithm first is trained by providing
it with a set of BOLD response patterns from the ROI along with
the mental operation associated with each pattern. Then
a holdout pattern not involved in the training is used to test the
classifier. If the classifier can predict above chance the mental
operation associated with the holdout pattern, the ROI contains
information specific to that particular mental operation and
likely is involved in mediating that operation. We carried out
two-way classifications in each ROI between construct-parts and
deconstruct-figure conditions and between maintain-parts and
maintain-figure conditions, with results shown in Fig. 3A. To
evaluate the informational content of each ROI in a single
analysis, we constructed the model confusion matrix that would
be expected for regions that mediated the mental operations
(Fig. 3B). A confusion matrix indicates the similarity between
patterns from different conditions; if patterns are more similar,
the classifier will be more likely to confuse them. In this case, we
expected high similarity between patterns from the same condi-
tion, moderate similarity when both patterns were from either
two manipulation or two maintenance conditions, and low sim-
ilarity when one pattern was from a manipulation condition and
the other was from a maintenance condition. We then carried

out correlation analyses between this model and the actual
confusion matrix in each ROI derived from four-way classi-
fications among the conditions (Fig. 3C). These analyses iden-
tified a subset of the ROIs, consisting of occipital cortex,
posterior parietal cortex (PPC), precuneus, posterior inferior
temporal cortex, dorsolateral prefrontal cortex (DLPFC), and
frontal eye fields, in which we could decode the specific mental
operations from patterns of neural activity. Additional control
analyses confirmed that our results were not affected by ROI size
or differences in response times between conditions (Fig. S1 and
Table S1).
Each of the four operations followed a three-stage temporal

sequence in which participants encoded an input into a mental
representation, performed a mental operation (construct, de-
construct, or maintain) on that representation, and produced an
output mental representation. Each of these stages entailed
a unique relationship among the mental states associated with
the four conditions (Fig. 4A). For example, the inputs to the
construct-parts condition were similar to those of the maintain-
parts condition, the operation performed during the construct-
parts condition was similar to that of the deconstruct-figure
condition, and the outputs from the construct-parts condition
were similar to those of the maintain-figure condition. Thus, the
relationship among the conditions evolved throughout the trial
and provided a means of further exploring the informational
content of the mental workspace. To do so, we carried out
a four-way classification among the conditions at each time point
and correlated the resulting confusion matrices with each of the
three model similarity structures in Fig. 4A. High correlation
between a confusion matrix and one of the model structures
would indicate that a particular region was carrying out the
corresponding stage of processing at that time. Fig. 4B shows the
time course of correlations with each model in occipital cortex.
In Fig. 4C, we report peak correlation times in each of the 12
ROIs. In the four regions with highest classification accuracies in
Fig. 3A, correlation peaks progressed from input through oper-
ation to output, providing strong evidence that these four areas
directly mediated the mental operations as they unfolded over
time. It should be noted that the differences between test stimuli
could have affected the output correlation time course (orange
trace in Fig. 4B) because the output mental representations were
similar to the stimuli presented during the test phase. Our ex-
perimental design did not allow us to evaluate the relative con-
tributions of the output mental representations and of the test
stimuli to the output correlation time course.
The above analyses show that a subset of ROIs supports the

temporal evolution of information necessary to carry out
particular mental operations. However, they do not provide

Fig. 1. Experimental design. (A) Parts could be constructed into 2 × 2 fig-
ures, and figures could be deconstructed into parts. (B) Participants per-
formed four mental operations on stimuli: construct parts into figure,
deconstruct figure into parts, maintain parts, or maintain figure. (C) The
stimulus set of 100 abstract parts, ordered from simple to complex. (D) Ex-
ample of figures. Parts and figures ranged from simple to complex according
to an index, d. This index allowed the difficulty of the task to be equated
across conditions. (E) Trial schematic. Trials begin with a figure and four
unrelated parts presented for 2 s, followed by a task prompt for 1 s con-
sisting of an arrow indicating the figure or the parts and a letter indicating
the task. In this case, the participant is instructed to maintain the figure in
memory. The task prompt is followed by a 5-s delay period during which no
stimulus is shown and the participant performs the indicated operation. Fi-
nally, a test screen appears for 2.5 s. Depending on the task, four figures or
four sets of parts are presented, and the participant indicates the correct
output of the operation.

Fig. 2. Eleven ROIs showing differential activity levels in manipulation and
maintenance conditions. An additional occipital cortex ROI was defined
anatomically. CERE, cerebellum; DLPFC, dorsolateral prefrontal cortex; FEF,
frontal eye fields; FO, frontal operculum; MFC, medial frontal cortex; MTL,
medial temporal lobe; OCC, occipital cortex; PCU, precuneus; PITC, posterior
inferior temporal cortex; PPC,: posterior parietal cortex; SEF, supplementary
eye field; THA, thalamus.
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evidence about how these regions communicate within the
mental workspace network. We investigated this communication
by analyzing patterns of functional connectivity between the ROIs.
For each condition, participant, and region, we constructed a
time course by concatenating the mean BOLD signal within that
region across the participant’s correct-response trials for that
condition. We calculated the functional connectivity, defined as
the correlation between pairs of time courses, for each condition,
participant, and pair of regions (14). This procedure yielded one
network-wide pattern of functional connectivity for each condi-
tion and participant. A cross-subject classification analysis on
these connectivity patterns successfully predicted whether par-
ticipants mentally manipulated or maintained imagery with
61.7% accuracy [t(14) = 2.4, P = 0.029], thus indicating that
patterns of connectivity between the network components
changed depending on the operation that participants performed
on the contents of their mental imagery. Investigating the weights
that the classifier assigned to each pair of regions allowed us to
determine which connections were most informative (Fig. 5A).
Increases in connectivity between pairs with positive weights drove
the classifier toward the manipulation conditions, whereas in-
creases between pairs with negative weights drove it toward the
maintenance conditions. Thus, stronger connectivities with
the precuneus and with left posterior inferior temporal cortex
indicated manipulation conditions, and stronger connectivities
primarily with the MTL indicated maintenance conditions. In
Fig. 5B, we plot the difference in functional connectivity between
conditions. During manipulation conditions the precuneus and
posterior inferior temporal cortex showed stronger connectivity
with several frontal and parietal regions, whereas connectivity
between the MTL and many regions became weaker. Thus, our
data show not only that a distributed set of regions mediates men-
tal operations but also that these regions communicate in an
information-processing network. The network switches between
two connectivity profiles depending on whether mental repre-
sentations are maintained or manipulated.

Discussion
Our findings reveal a widespread cortical and subcortical net-
work that operates on visual representations in the mental
workspace. This network includes four core regions spanning the
DLPFC, PPC, posterior precuneus, and occipital cortex that
manipulate the contents of visual imagery. Within these regions

we decoded and tracked the evolution of mental operations over
time. Several other areas showed a difference in BOLD re-
sponses between the manipulation and maintenance conditions
but without the specificity found in the four core areas. There-
fore it is likely that an extended network of regions is involved in
the operations. Changes in patterns of connectivity between
the mental workspace network’s nodes reveal that the network
supports at least two distinct modes of operation, depending
on whether mental representations are maintained or manip-
ulated. We discuss each of the identified components of the
network below.

Frontoparietal Cortex. Our finding that the DLPFC and PPC di-
rectly mediate manipulation of visual imagery is supported by
multiple studies suggesting that a network of frontal and parietal
areas is involved in many high-level cognitive abilities in humans
(10–13). Miller et al. (15) showed that the responses of neurons
in DLPFC convey more information about the task relevance of
stimuli than about their specific features and that this selectivity
for task relevance is maintained over extended durations in the
absence of stimulus input. Thus, the DLPFC appears to be part
of a network that maintains representations in working memory
via attention. Human neuroimaging studies have shown that both
the DLPFC and the PPC are activated, regardless of the type of
information that is held in working memory (16, 17). Selectivity
for task rather than representation distinguishes this system from
subsidiary systems that are capable only of maintaining particular
classes of information (18). These findings support the view that
the frontoparietal network is an executive system that recruits
subsidiary systems, as proposed in Baddeley’s (19) model of
working memory. Modeling work by O’Reilly and colleagues (8,
9) has shown how prefrontal cortex may be able to self-organize
abstract rules flexibly and later apply them to specific repre-
sentations. This ability is common to many flexible cognitive
processes in humans such as analogical reasoning, creativity (11),
and fluid intelligence (13). Our data provide empirical support
for this model by showing that the DLPFC and PPC mediate not
only the maintenance of representations in working memory but
also the manipulation of those representations. Thus, these areas
may form the core of a system that mediates conscious oper-
ations on mental representations, in this case the contents of
visual imagery represented at least partially in the occipital cortex.

Fig. 3. Results of multivariate pattern classification. Asterisks indicate significance (*P ≥ 0.05; **P ≥ 0.01; ***P ≥ 0.001; *4, P ≥ 0.0001). (A) Results for two-
way classifications in each ROI between manipulation conditions and between maintenance conditions. The bar plot shows classification accuracies in
descending order. Error bars indicate SEMs. Asterisks indicate accuracies significantly above chance (P ≤ 0.05, FDR corrected across the 24 comparisons). Table
S2 shows full statistical results. (B) Model similarity structure for regions that mediate the mental operations. Manipulation and maintenance conditions
should be more similar within condition types than across condition types. (C) Confusion matrices from four-way classifications in each ROI. Values are
percentages. Asterisks indicate regions in which confusion matrices correlated significantly with the model (P ≤ 0.05, FDR corrected across the 12 compar-
isons). Because ROIs were selected based on differences in activity between manipulation and maintenance conditions, we considered only values within
manipulation and maintenance conditions in the correlation (within the green squares in B). Table S3 shows full statistical results.
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Occipital Cortex. Several studies have found that the occipital
cortex processes information relevant to internally generated
visual experience. Harrison and Tong (6) used patterns of ac-
tivity in early visual cortex to decode the orientation of gratings
that participants maintained in working memory. Recently,
Horikawa and colleagues (7) decoded the contents of partic-
ipants’ visual experience during dreaming from patterns in visual
cortex. Thus, the visual cortex likely represents the contents of
both internally and perceptually generated visual experience.
Our results extend these findings to show that mental repre-
sentations not only are formed but also are operated on in visual
cortex. This result may generalize to other sensory domains, so
that the brain mediates perceptual processes and operates on the
corresponding mental representations in the same regions.

Precuneus. Margulies et al. (20) reported that the precuneus in
humans is functionally connected to the lateral frontal, posterior
parietal, and occipital cortices. The precuneus is one of the most
connected regions of the cortex, suggesting that it may serve as
a hub in several cortical networks. In their review, Cavanna and
Trimble (21) cite a body of evidence that the precuneus is in-
volved in visuospatial imagery, is relatively larger in humans than
in nonhuman primates and other animals, and is one of the last
regions to myelinate during development. Consistent with these
findings, Vogt and Laureys (22) propose that the precuneus plays
a central role in conscious information processing. Extending

this work, our data show that the posterior precuneus becomes
more functionally connected to the DLPFC, PPC, and occipital
cortex when participants manipulate mental visual representations
and suggest that it acts as a hub in the mental workspace network.

Extended Network. Our findings reveal that the DLPFC, PPC,
posterior precuneus, and occipital cortex are central to the
mental workspace. However, several other regions activated
during the experimental tasks. Current understanding of these
areas’ functions suggests possible roles they could play in mental
operations. The cerebellum, long thought to be involved exclu-
sively in motor coordination, now is known to connect strongly to
prefrontal and posterior parietal cortices and to mediate atten-
tional processes (23). Posterior regions of the inferotemporal
cortex are involved in visual object processing (24). The thalamus
is a hub for interaction between cortical areas and may play
a critical role in consciousness (25). The MTL is a hub in
memory formation and retrieval (26). This role is supported by
our finding of stronger functional connectivity between the MTL
and other ROIs during maintenance conditions. The frontal and
supplementary eye fields play a role in controlling visual atten-
tion (27). Recently, Higo et al. (28) showed that the frontal
operculum controls attention toward occipito-temporal repre-
sentations of stimuli held in memory. The medial frontal cortex
is a hub in the default mode network that plays a role in self-

Fig. 4. Temporal progression of the neural informational structure during mental operations. (A) Model similarity structures between the four conditions
based on the input mental representation, the mental operation performed, and the output mental representation. For example, constructing and main-
taining parts have similar input representations, whereas constructing parts and maintaining figures have similar output representations. The red outline
indicates values used in the following correlation time courses. (B) Time course of correlations in occipital cortex between model similarity structures and
confusion matrices from individual time-point classifications. Shading indicates SEMs. The schematic along the x-axis shows the trial stages. (C) Peak corre-
lation times for the 12 ROIs. In the four ROIs with highest classification accuracies in Fig. 3, the peaks in the correlation time courses followed a significant
sequence from input mental representation, through operation, to output representation (asterisks indicate significant ROIs). Table S4 shows full statistical results.

Fig. 5. Multivariate pattern analysis of functional connectivities. (A) Sensitivities for each pair of ROIs in a between-subject classification of functional
connectivity in the manipulation and maintenance conditions. Red sensitivities are positive, driving the classifier toward choosing “manipulate.” Blue sen-
sitivities are negative, driving it toward “maintain.” Only significant nonzero sensitivities are shown [P ≤ 0.05, corrected for similarity between folds (36)].
Saturated colors indicate sensitivities that survived FDR correction across the 231 comparisons. (B) Difference in functional connectivity in the manipulation
and maintenance conditions. Positive and negative differences are separated into the upper and lower diagonals, respectively. Only significant differences in
connectivity are shown (P ≤ 0.05), and differences surviving FDR correction are shown in saturated colors.
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directed attentional processes (29). Thus, all these regions are
likely involved in the mental operations performed by participants.
A significant finding of the present study is that connectivity in

the mental workspace network switches between orthogonal
modes of operation depending on whether the network main-
tains or manipulates representations. Although several network
components represent information during both tasks, our data
show that patterns of network connectivity associated with these
tasks differ substantially. Maintenance of representations involves
dense, bilateral interconnections across the entire network with
the MTL acting as a hub, whereas manipulation of those rep-
resentations recruits a sparse, slightly left-lateralized network
with a hub in the posterior precuneus. Although the MTL hub
does not contain specific information about either mental rep-
resentations or manipulations, the posterior precuneus hub
contains information specific to each operation. This finding
suggests that these hubs serve distinct functions across the tasks.
The MTL appears to bind network components together,
whereas the posterior precuneus may exchange information
within a sparse core of this network that itself supports ma-
nipulation of representations.
Previous studies have not been able to find evidence that the

areas we identified play specific roles in manipulating repre-
sentations. They have shown differences in BOLD or connec-
tivity between maintenance and manipulation in certain areas
(30–32) but have not shown that these areas are responsible for
the manipulations themselves. An alternative explanation of
these findings could be merely that attentional allocation is in-
creased during manipulation as compared with maintenance
tasks. In this study we investigated neural activity in two quali-
tatively distinct types of manipulations. We show that a subset of
areas in the mental workspace network contains information
specific to particular manipulations. We additionally show that
the task-related informational structure of these areas evolves
over time in accordance with the manipulations performed.
These results provide specific evidence for the particular network
components that directly mediate mental operations.
Human cognition is distinguished by the flexibility with which

mental representations can be constructed and manipulated to
generate novel ideas and actions. Dehaene (2) and others have
proposed that this ability is a key role of a global neuronal
workspace that in part realizes our conscious experience. Here
we have shown that patterns of activity in just such a distributed
neuronal network mediate the flexible recombination of mental
images. Although the present study was limited to visual imagery,
we anticipate that this network is part of a more general work-
space in the human brain in which core conscious processes in
frontal and parietal areas recruit specialized subdomains for
specific mental operations. Understanding the neural basis of
this workspace could reveal common processes central to the
flexible cognitive abilities that characterize our species.

Materials and Methods
Participants. Sixteen participants (six females) age 19–30 y gave informed
written consent according to the Institutional Review Board guidelines of
Dartmouth College before participating. Data from one participant who
could not achieve our task accuracy criterion were discarded before further
analysis. Participation consisted of two sessions: an initial behavioral session
during which participants practiced the tasks and an fMRI session.

Stimulus. The stimulus set consisted of 100 abstract parts (Fig. 1C). The first
eight parts were defined manually, and each subsequent part was gener-
ated by randomly perturbing a quarter-circle with fixed endpoints (see SI
Materials and Methods for details).

Task. Participants performed four mental operations with the stimuli: They
mentally constructed four parts into afigure, deconstructed afigure into four
parts, maintained four parts, or maintained a figure. At the start of each trial,
both a figure and four unrelated parts were displayed to equate for low-level

image properties and attention across tasks. After 2 s, the stimulus dis-
appeared and was replaced for 1 s by a prompt indicating the task to be
performed. The participant then had 5 s to perform the operation, during
which only a fixation dot appeared. Finally, a test screen appeared in which
the target output of the operation was shown along with three distractors
that were identical to the target except for a single part. The participant was
instructed to indicate the target within 4 s of the test screen’s appearance.
The stimulus complexity was updated on each trial so that participants
achieved an accuracy of two out of three correct responses in each trial type.
See SI Materials and Methods for an extended description of the task.

MRI Acquisition and Preprocessing. Data were collected using a 3.0 T Philips
Achieva Intera scanner with a 32-channel sense head coil at the Dartmouth
Brain Imaging Center. Participants completed 10 functional runs consisting of
16 trials interleaved with 10-s blanks. fMRI data were preprocessed using FSL
(33), and structural images were processed using the FreeSurfer image
analysis suite (34). See SI Materials and Methods for a detailed description of
acquisition parameters and preprocessing steps.

ROI Selection Procedure. A whole-brain GLM analysis was carried out on
functional data using the FMRIB Software Library’s FEAT tool. A first-level
analysis for each participant used boxcar predictors for each of the four
conditions, convolved with a double-gamma hemodynamic response func-
tion (HRF). Only trials in which participants made correct responses were
considered (∼27 per condition). The results of this analysis were passed to
higher-level cross-subject analyses carried out in Montreal Neurological In-
stitute space, in which t contrasts were defined for manipulate > maintain
and for manipulate < maintain. Each t-contrast map was cluster thresholded
at z ≥ 2.3; clusters then were thresholded at P ≤ 0.05 according to Gaussian
Random Field theory (33). This analysis yielded 11 bilateral ROIs that then
were transformed back into each participant’s native space for further
analysis. An additional occipital ROI was defined anatomically in each par-
ticipant’s native space using the following cortical masks from FreeSurfer:
inferior occipital gyrus and sulcus; middle occipital gyrus and sulci; superior
occipital gyrus; cuneus; occipital pole; superior occipital and transverse oc-
cipital sulci; and anterior occipital sulcus.

Multivariate Pattern Analysis: Classification. Multivariate pattern analysis
(MVPA) was carried out using PyMVPA (35). Spatiotemporal patterns were
constructed for each correct-response trial and ROI using the z-scored BOLD
response from TRs 4–6 (the period during which the operation was per-
formed, after shifting by a 4-s estimate of the HRF delay). Classification was
carried out in each ROI between construct-parts and deconstruct-figure trials
and between maintain-parts and maintain-figure trials using these patterns,
a linear support vector machine (SVM) classifier, and leave-one-out cross-
validation. Significance of accuracies was evaluated using one-tailed, one-
sample t tests compared with chance (50%) and false-discovery rate (FDR)
corrected across the 24 comparisons (one for each ROI and classification). A
four-way classification also was carried out in each ROI to produce the
confusion matrices in Fig. 3C. The correlation between each of these con-
fusion matrices and the model similarity structure was calculated (Fig. 3B),
and significance was determined at P ≤ 0.05, FDR corrected across the 12
comparisons (one for each ROI).

MVPA: Correlation Time Courses. Four-way classification was carried out for
each ROI and at each time point of the trial, here using only spatial patterns of
the BOLD signal across all voxels within the ROI. This procedure produced
a confusion matrix for each time point and ROI, and these confusion ma-
trices were correlated with each of the model similarity structures in Fig. 4A.
The first structure models similarities between the conditions based on
whether the input representation is a set of parts or a figure. The second
structure models similarities based on the two types of operations carried
out, manipulation or maintenance. The third structure models similarities
based on the outputs from each condition. For each ROI and model struc-
ture, we calculated the time point at which the mean correlation reached
a maximum, yielding the table in Fig. 4C. These calculations were restricted
to TRs 3–8, representing the pretest portion of the trial shifted by 4 s to
account for hemodynamic lag. For each ROI we carried out one-way re-
peated-measures ANOVA on the peak correlation times to test whether the
expected progression from input through operation to output occurred. We
performed the analysis on trimmed, jackknifed data as recommended by
Miller et al. (36) for latency analyses. In a jackknifed analysis with N subjects,
N grand means of the data are calculated, each with one subject left out.
The analysis then is performed on these grand means with corrections ap-
plied for the jackknife-induced decrease in variance. In the case of noisy
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estimates, as occur when calculating latencies from single-subject time
courses, this procedure provides cleaner results and does not bias estimates
of significance. For each ANOVA we defined two orthogonal linear contrasts
(input/operation/output: C1 = −1/−1/2; C2 = −1/1/0) to evaluate the tem-
poral order of the peaks. We determined that an ROI significantly followed
the expected progression if and only if both of these contrasts were sig-
nificant at P ≤ 0.05 uncorrected.

Functional Connectivity. The functional connectivity (14), defined as the
Fisher’s z-transformed correlation between time courses, was calculated for
each participant and condition across all pairs of the 24 unilateral ROIs and
using data pooled across all correct trials. This procedure gave a single

connectivity pattern for each participant and condition. Unilateral ROIs were
used to maximize the potential information in each pattern. We then carried
out a cross-subject classification between manipulation and maintenance
conditions, using these connectivity patterns and an SVM classifier. The
sensitivities shown in Fig. 5A are significantly different from zero in a one-
sample t test, corrected for the low variance because of the similarity be-
tween folds (36), and thresholded at P ≤ 0.05.
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