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The difficulty of tracking multiple moving objects among identical distractors increases with the number of tracked targets. Previous
research has shown that the number of targets tracked (i.e., load) modulates activity in brain areas related to visuospatial attention,
giving rise to so-called attention response functions (ARFs). While the hemifield/hemispheric effects of spatial attention
(e.g., hemispatial neglect, hemifield capacity limits) are well described, it had not previously been tested whether a hemispheric
or hemifield imbalance exists among ARFs. By recording blood oxygenation level-dependent activity from human brains (n= 19,
female and male) in a multiple-object tracking paradigm, we show that the number of tracked objects modulates activity in a large
network of areas bilaterally. A significant effect of contralateral load was found in earlier areas throughout the dorsal and ventral
visual streams, while the effects of ipsilateral load emerged in later areas. Both contra- and ipsilateral load significantly influenced
activity in the parietal and frontal lobes, specifically the dorsal attention network. In addition, some brain regions in the occipital
lobe were significantly more sensitive to contralateral than ipsilateral load. Our results are consistent with findings showing that a
diverse set of brain areas contributes to tracking multiple targets. In particular, we extend the canonical view of load-based ARFs to
include hemifield bias. Given the hemifield-specific nature of speed and capacity limits to multiple-object tracking, we conjecture
that areas that show a strong hemifield preference may impose a bottleneck on processing that results in limits on the capacity
and speed of tracking.

Key words: attention; attentional tracking; hemisphere specificity; mental effort; multiple-object tracking

Significance Statement

We investigated how attentional effort impacts brain activity. Effort (the number of targets in a multiple-object tracking task)
parametrically drives activity in the attention system. Our findings reveal brain areas where effort-driven increases in activity
are dependent on the visual hemifield where targets are tracked. We show that the load-dependent responses differ between
earlier visual areas, which prefer targets on the contralateral side, and later areas that respond to targets anywhere in the
visual field. This research challenges previous explanations of hemispatial neglect and enhances our understanding of how
the brain manages spatial attention and mental effort. Additionally, we identify regions that might be the source of hemifield-
specific capacity limits in attentional tracking.

Introduction
Object tracking is a fundamental function of the visual system.
Driving in traffic would be unimaginable without the ability to
keep track of target objects as they move. Performance in object
tracking tasks is governed by several factors that severely
constrain its effectiveness. For example, as objects get closer

together or increase in speed, the ability to track them decreases
(Intriligator and Cavanagh, 2001; Cavanagh and Alvarez, 2005;
Störmer et al., 2014; Maechler et al., 2021; Holcombe, 2023).
Additionally, tracking performance drops as the number of
tracked targets increases (Alvarez and Cavanagh, 2005;
Franconeri et al., 2008; Scholl, 2009).

How does the brain track multiple objects at once? Previous
neuroimaging studies have identified several brain areas that
may contribute to this task, which broadly fit into two categories.
One set of areas show increasing blood oxygenation level-
dependent (BOLD) responses as the number of tracked objects
increases (i.e., tracking load). In contrast, a second set is comprised
of areas that respond during attentional tracking, but their activity
is independent of the number of targets tracked. The two kinds of
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attention response functions (ARFs) are called load-dependent and
task-dependent, respectively (Culham et al., 2001; Jovicich et al.,
2001; Shim et al., 2010; Jahn et al., 2012; Alnæs et al., 2014;
Nummenmaa et al., 2017). ARFs are typically found in the superior
parietal lobule (SPL), the intraparietal sulcus (IPS), and the frontal
eye fields (FEF)—all areas that are canonically associated with
visuospatial attention. However, they are also found in areas earlier
in the visual processing stream such as V3 and hMT.

While these prior studies have provided a great deal of insight
into the neural substrate of multiple-object tracking, the under-
lying mechanism is still debated. For example, although it is
well known that some resources for attentional tracking are
hemisphere specific (Holcombe and Chen, 2012; Störmer et al.,
2014), most of the fMRI studies of ARFs combined results for
tracked targets that were contra- or ipsilateral to the brain areas
being imaged. This contralateral versus ipsilateral relation is crit-
ical, however, because more targets (Alvarez and Cavanagh,
2005) can be successfully tracked at higher speed (Holcombe
and Chen, 2012; Störmer et al., 2014) when the targets are distrib-
uted across both visual hemifields rather than constrained to just
one. Additionally, tracking performance decreases when two tar-
gets cross the vertical meridian simultaneously (Strong and
Alvarez, 2020). Thus, there is considerable evidence from beha-
vioral studies that tracking processes are to some extent indepen-
dent within each hemifield. However, this evidence has not
previously been considered when investigating ARFs. The pre-
sent study aims to remedy this lack.

In particular, we ask: Are load-dependent ARFs hemifield
specific? In one fMRI study (Shim et al., 2010), ARFs for different
brain areas were assessed with respect to whether the targets were
contra- or ipsilateral to the brain area. Their results suggested
that contra- as well as ipsilateral increases in tracking load
increase BOLD activity in the parietal lobe, with ipsilateral targets
having a slightly smaller effect. However, in their experiment, the
number of targets was only varied from one to two targets, while
their speed was manipulated separately. Additionally, Shim et al.
(2010) did not observe hemispheric differences and therefore
combined regions of interest (ROIs) from the two hemispheres
to increase their statistical power.

There is extensive evidence for hemispheric differences in
attention, with the right hemisphere being more important for
spatial attention. Hemispatial neglect, a neuropsychiatric disor-
der that renders some stroke survivors unable to attend to the
contralesional side of space, occurs predominantly after injuries
to the right hemisphere (Parton et al., 2004; Corbetta and
Shulman, 2011). The right hemisphere dominance for neglect
implies a corresponding asymmetry of the neural circuits under-
lying spatial attention in healthy brains. Earlier accounts of
hemispatial neglect (Mesulam, 1981) claimed that the right
hemisphere can deploy spatial attention to both hemifields,
while the left hemisphere only does so to its contralateral hemifi-
eld. Based on this, one would predict that ARFs in the left
hemisphere should show a contralateral bias, while such a bias
should be absent or at least weaker in the right hemisphere.
More modern explanations of neglect predict a contralateral
bias in both hemispheres (Corbetta and Shulman, 2011). In addi-
tion to neglect, other hemifield-specific effects of attention have
been reported in the literature. For example, spatial attention
to the left hemifield is more impacted by high concurrent work-
ing memory load than attention to the right hemifield (Naert et
al., 2018). Leftward attentional biases are more common among
young children, and they decrease during development (Hoyos et
al., 2021).

Here we examined the hemifield specificity of load-dependent
ARFs. Specifically, we asked whether any brain areas with load-
dependent ARFs demonstrate a contralateral bias. To do so, we
limited each target’s motion to either the left or right hemifield
and varied the number of targets in each hemifield indepen-
dently. We recorded fMRI data while participants tracked
between zero and four targets, out of a total of eight objects dis-
tributed evenly across both hemifields. The number of targets in
each hemifield varied independently between zero and two tar-
gets, allowing us to estimate the effect of increasing tracking
load in each hemifield.

We found ARFs in a diverse network of brain areas, consistent
with previous studies (Culham et al., 2001; Jovicich et al., 2001;
Shim et al., 2010; Jahn et al., 2012; Alnæs et al., 2014).
Crucially, we extended the canonical load-dependent ARFs to
include the hemifield in which targets are tracked. Several brain
regions in the visual system showed a strong hemifield prefer-
ence. These areas exhibited a contralateral bias in their ARFs,
such that the effect of tracking load was stronger for contralateral
than ipsilateral targets. Processing in these areas could be a cause
of the hemifield-specific bottleneck in attentional tracking capac-
ity seen behaviorally (Alvarez and Cavanagh, 2005; Holcombe
and Chen, 2012; Störmeret al., 2014). These areas were found
bilaterally throughout the dorsal visual stream, including V3a,
hMT, IPS, and SPL. In contrast, some higher-order attention–
related areas, like the frontal and supplementary eye fields and
subsets of the IPS, were modulated by targets regardless of their
position in the visual field. For example, parts of the dorsal atten-
tion network in the parietal and frontal lobes responded to ipsi-
lateral targets as well as to contralateral targets. Against
Mesulam’s (1981) hypothesis, we did not find evidence that the
right hemisphere directs attention in a “more global” fashion
than the left hemisphere.

Materials and Methods
Participants. We conducted an a priori power analysis based on the

effect sizes reported in the literature on ARFs (Jovicich et al., 2001; Alnæs
et al., 2014) using G*Power (Faul et al., 2007). This analysis revealed that
one would need ∼10 participants to detect ARFs with >90% power using
an experimental design similar to these previous studies. A general rec-
ommendation based on simulations suggests the use of 20 participants
when investigating strong, localized effects in fMRI as we do here
(Cremers et al., 2017).

We therefore recruited 20 volunteers to participate in the experiment
(10 men and 10 women). Their ages ranged from 20 to 60, with an aver-
age age of 28.8 years. Three authors (M.R.M, E.C., and P.T.) were among
the participants. All participants gave informed consent and were reim-
bursed for their time with $30. Participants’ vision was normal or cor-
rected to normal. One participant was excluded from all analyses
following an incidental finding in their structural MRI scan, which was
referred to a neurologist. All procedures followed standard ethical guide-
lines and were approved by Dartmouth’s Institutional Review Board.

Experimental design. As in other attentional tracking tasks, partici-
pants were instructed to maintain their attention on one or several target
objects among physically identical distractors as these objects moved
over the screen. At the beginning of every trial, eight circles with a dia-
meter of 0.5 degrees of visual angle (dva) appeared on a black back-
ground, four of them in each hemifield. Between zero and four circles
were highlighted in red to mark them as targets to be tracked, while dis-
tractor circles were highlighted in blue. Then all circles’ colors reverted to
white, and they moved over the screen randomly. We instructed partic-
ipants to covertly track the positions of all target circles (i.e., those pre-
viously highlighted in red) with their attention while fixating a white
crosshair in the center of the screen. After the circles stopped moving,
one circle was randomly highlighted, and participants responded

2 • J. Neurosci., May 7, 2025 • 45(19):e1340242025 Maechler et al. • Hemifield Specificity of Attention during Tracking



whether it was one of the targets or one of the distractors in a
two-alternative forced choice format where 50% accuracy would corre-
spond to random guessing. Figure 1 depicts a schematic of the task
configuration.

The red and blue colors marking some circles as targets and others as
distractors were displayed for 2 s. After the circles turned white, they
moved over the screen for 10 s. When the circles stopped moving, par-
ticipants were given up to 5 s to respond whether the randomly high-
lighted circle had been a tracked target or a distractor. There was a
16 s break between trials (i.e., blocks) to allow the BOLD signal to return
to the baseline.

This fMRI experiment was carried out as a block design. During each
17 s trial, the same number of objects moved across the screen. Between
blocks (i.e., during the 16 s break), the screen was completely black. On a
given trial, participants tracked between zero and four targets spread
across the two hemifields (left, right) in nine possible load conditions
as follows: (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2).
Objects that were not designated as targets in the beginning of a trial
served as distractors. This way, the visual input to a participant’s brain
was identical during all tracking trials. Any difference in BOLD activity
across experimental conditions must therefore have been caused by
differences in processing rather than differences in the stimulus.

All circles translated over the screen in random directions at a speed
of 1.75 dva/s. Shim et al. (2010), as well as others (Franconeri et al., 2008;
Franconeri et al., 2013; Holcombe, 2023), have demonstrated that there is
a strong interaction between load capacity and target speed, with slower
object motion increasing the number of trackable targets. We kept object
speed constant in all conditions and chose a speed that would allow most
participants to track accurately at all tested tracking loads (Franconeri
et.al., 2008).

Motion directions were random but constrained in several ways. The
objects moved within squares of 7 by 7 dva that were offset to the left and
right of fixation by 2.5 dva, respectively, leading to a 5 dva minimum
separation between the left and right hemifield areas of object motion.
If their direction of motion would place them outside of the boundaries
of these squares, their direction was changed randomly to a direction that
would keep them inside their virtual boundary. Objects alsomaintained a
minimum separation of 0.5 dva from each other and changed direction
randomly when their object buffer zones collided.

The number of targets varied from zero to two targets in each hemifi-
eld, with all possible combinations across hemifields. Thus, the total
tracking load ranged from zero to four targets. In this way, we were
able to manipulate tracking load independently in each hemifield, lead-
ing to nine experimental conditions. In other words, every possible num-
ber of targets (zero to two) in one hemifield was paired with every
possible number of targets in the other hemifield in a random order.
A trial of each condition was included in every fMRI imaging run,
and runs were repeated 10 times per participant (however, due to
technical difficulties, two participants only completed eight and nine
runs, respectively).

Stimulus presentation. Stimuli were created using MATLAB
(MathWorks), specifically Psychophysics Toolbox (Brainard, 1997; Pelli,
1997). They were then projected onto a screen (19 dva by 7 dva projection
area) inside the MRI scanner bore. Participants responded via button
presses and were instructed to use the same finger to press the buttons
throughout the experiment. Eye movements were recorded using an
Eyelink 1000+ (SR Research) that was placed inside the scanner bore
underneath the screen.

MRI acquisition. Images were acquired at the Dartmouth Brain
Imaging Center on a 3 T Siemens PRISMA scanner. After a brief localizer
scan, three-dimensional fieldmaps were collected (anterior to posterior
and posterior to anterior), which were used for image preprocessing to
aid with distortion correction. After the first five functional imaging
runs [multiband T2* echoplanar imaging (EPI): TR, 1,000 ms; TE,
30 ms; resolution, 2 mm3 isotropic; flip angle, 60°; multiband factor, 4;
Grappa, 2], we acquired a high-resolution T1 image (MPRAGE; resolu-
tion, 0.94 mm3 isotropic; flip angle, 8°; TR, 2.3 s; TE, 2.3 ms). This was
then followed by the remaining five functional runs.

MRI preprocessing with fMRIPrep. Results included in this
manuscript are based on data preprocessing performed using
fMRIPrep 22.0.1 (Esteban et al., 2019), which is based on Nipype
1.8.4 (Gorgolewski et al., 2011). These tools print out a boilerplate
description of processing steps detailing what methods, algorithms,
and software packages were used with which recordings. This text is
reprinted here:

A fieldmap was estimated based on two EPI references with topup
(Andersson et al., 2003). The T1-weighted (T1w) image was corrected
for intensity nonuniformity with N4BiasFieldCorrection (Tustison
et al., 2010), distributed with ANTs 2.3.3 (Avants et al., 2008), and
used as T1w reference throughout the workflow. The T1w reference
was then skull-stripped with a Nipype implementation of the
antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs
as target template. Brain tissue segmentation of cerebrospinal fluid,
white matter, and gray matter was performed on the brain-extracted
T1w using fast (FSL 6.0.5.1:57b01774; Zhang et al., 2001). Brain surfaces
were reconstructed using recon-all (FreeSurfer 7.2.0; Dale et al.,
1999), and the brain mask estimated previously was refined with a
custom variation of the method to reconcile ANT-derived and
FreeSurfer-derived segmentations of the cortical gray matter of
Mindboggle (Klein et al., 2017). Volume-based spatial normalization
to one standard space (MNI152NLin2009cAsym) was performed
through nonlinear registration with antsRegistration (ANTs 2.3.3),
using brain-extracted versions of both T1w reference and the T1w
template.

For eachof the 10BOLDrunsper participant, the followingpreprocess-
ing was performed. First, a reference volume and its skull-stripped version
were generated using a custom methodology of fMRIPrep. Head-motion
parameters with respect to the BOLD reference (transformation matrices
and six corresponding rotation and translation parameters) were estimated
before any spatiotemporal filtering using mcflirt (FSL 6.0.5.1:57b01774;
Jenkinson et al., 2002). The estimated fieldmapwas then aligned with rigid
registration to the target EPI reference run. The field coefficients were
mapped on to the reference EPI using the transform. BOLD runs were
slice-time corrected to 0.456 s (0.5 of slice acquisition range 0–0.912 s)
using 3dTshift from AFNI (Cox and Hyde, 1997). The BOLD reference
was then coregistered to the T1w reference using bbregister (FreeSurfer)
which implements boundary-based registration (Greve and Fischl,
2009). Coregistration was configured with six degrees of freedom. The
BOLD time series were resampled into standard space, generating a pre-
processed BOLD run in MNI152NLin2009cAsym space. A reference vol-
ume and its skull-stripped version were generated using a custom
methodology of fMRIPrep. The BOLD time series were resampled onto
the following surfaces (FreeSurfer reconstruction nomenclature): fsnative
and fsaverage. Surface resamplings were performed using mri_vol2surf
(FreeSurfer).

Further MRI preprocessing. Functional data were spatially smoothed
by iteratively averaging neighboring vertices, with a full-width at half-
maximum (FWHM) of four vertices. Note that since smoothing was
done in surface space, and due to the spatial nonuniformity of
FreeSurfer’s meshes (Ma et al., 2023), the FWHM of the smoothing
procedure needs to be specified in terms of the lattice instead of
millimeters.

An analysis using predefined parcellations of the brain can be used as
an alternative to whole-brain group analyses. Such ROI analyses can
reveal region-wide effects that would otherwise get drowned out on the
vertex level. Additionally, comparing the brain hemispheres to each
other at the vertex or voxel level should be avoided because brain hemi-
spheres are asymmetric. ROIs make it possible to compare functionally
equivalent areas between hemispheres. Finally, ROIs offer a more
nuanced perspective on the clusters found in the whole-brain analyses,
since the exact extent of these clusters depends among other things on
choices like the cluster forming threshold. An ROI analysis sacrifices
some spatial resolution but increases power and can reveal whether
contralateral bias also exists outside the clusters identified in the
whole-brain analysis.

Typically, ROIs are defined individually for each participant, using a
functional localizer or retinotopic mapping. This has the benefit of
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factoring in individual variability in the size and location of functionally
distinct regions, so that this variability does not negatively impact the
group-level analysis (Saxe et al., 2006). Recent findings have shown, how-
ever, that a large proportion of the interparticipant variability in
the region size and location is closely tied to variability in the anatomy
of the cortical surface. Surface-based normalization approaches allow
for comparisons across participants that take this variability into account
and factor in folding geometry of the cortical surface (Brodoehl et al.,
2020). This has led to the rise of probabilistic atlases, based on surface-
based group–level comparisons of ROI data from a large number of
participants, that generalize well to new participants (Wang et al.,
2015), even for higher-level visual regions (Rosenke et al., 2021). These
atlases are extremely useful because they can be applied to new partici-
pants without the need for collecting retinotopy or functional localizer
data in a separate fMRI session. The only thing necessary is acquiring
an anatomical scan and running FreeSurfer’s segmentation and surface
reconstruction algorithm (Dale et al., 1999). Here we used ROIs based
on a probabilistic atlas of topographically organized visual areas, created
by Wang et al. (2015). This atlas was generated by functionally defining
25 topographic ROIs covering 22 visual areas in ∼50 individual partici-
pants, standardizing each participant’s cortical surface using icosahedral
tessellation and projection (Argall et al., 2006) and then assessing
the likelihood, across participants, of each vertex on the standardized
surface belonging to a particular ROI. The atlas was defined using a
maximum probability approach, which only considers a given vertex
as part of the set of ROIs if it is more often found within the set than
outside the set, across participants. If this is the case, the vertex is given
the value of the most likely ROI. This approach captures much of
the overall structure of ROIs defined for individual participants
and generalizes well to novel participants who did not contribute to
the atlas’ generation (Wang et al., 2015). We downloaded the atlas
from https://napl.scholar.princeton.edu/resources and converted the
ROIs from the standardized surface space to FreeSurfer native space
(fsnative) for each of our participants, using a script created by
Takamura and Benson, also available at the link above. We excluded
five ROIs from our analysis, IPS4 and 5, SPL, TO2, and FEF, each of
which covered a comparatively small number of vertices in the probabi-
listic atlas, due to high variability in their location across participants.
The dorsal and ventral segments of V1, V2, and V3 were analyzed sepa-
rately. The result was a total of 20 ROIs in each hemisphere, shown in
outline in Figure 2.

Statistical analyses. Tracking accuracy was assessed statistically
using mixed-effect binomial logistic regression models fitted to binary
outcome data. The model included fixed effects for the number of targets
on the left and on the right, along with a random effect for individual par-
ticipants. To assess the significance of target loads on tracking accuracy,
we compared the model with two nested alternative models, each exclud-
ing either the predictor for left or right load, using likelihood ratio tests
(Luke, 2017). This approach allowed us to estimate how adding targets to
each hemifield affected tracking accuracy while controlling for the num-
ber of targets in the other hemifield. Similarly, eye movement data were
analyzed using mixed-effect models to evaluate differences in gaze beha-
vior between conditions.

To analyze the fMRI data, we first fit a generalized linear model
(GLM) to BOLD time series data from all runs at each vertex in fsaverage
space, with nine regressors of interest estimating brain responses to each
experimental condition separately. Besides the regressors for each condi-
tion, we used nuisance regressors for motion (six rigid motion directions
estimated during preprocessing) and for scanner drift (first- and
second-order polynomials). The resulting beta maps were then used
for all group-level whole–brain analyses.

At the group level, we fit linear mixed models at each vertex to the
beta maps generated for each participant and condition, described below
in Wilkinson notation (Wilkinson and Rogers, 1973). The effect of total
load as well as the comparison of tracking against passive viewing (Fig. 2)
can be estimated from the following model:

% signal change � loadtotal +(1|participant),

where (1|participant) indicates the random effect for each participant,
while effects of hemifield-specific load (Fig. 3) were estimated similarly
using a model of the following form:

% signal change � loadleft + loadright +(1|participant).

Contrast images were smoothed by iteratively averaging neighboring
vertices. All statistical analyses were conducted in surface space. This
approach improves the signal-to-noise ratio and accounts better for indi-
vidual differences in brain anatomy than smoothing in volume space
(Brodoehl et al., 2020).

Whole-brain analyses involve statistical tests at each vertex and
therefore require correction for multiple comparisons (Bennett et al.,
2009). To this end, we used random field theory, which estimates the
probability of finding a cluster of vertices with a certain height empiri-
cally from the smoothness of the image by accounting for the spatial
autocorrelation of fMRI data (Worsley, 2001; Chung et al., 2010). The
data were then cluster corrected using random field theory with an initial
cluster forming threshold of p < 0.0001. These analyses were imple-
mented using the python packages Nilearn (version 0.10.0) and
BrainStat (0.4.2). We used Nilearn for visualizations.

The same GLM was fit to the data in fsnative space for the atlas-based
(Wang et al., 2015) ROI analysis to estimate the ARF slopes and intercepts
directly from the ROIs’ mean percentage signal change. To estimate the
impact of an added target on brain activity, linear regression models
were individually fitted for each participant, hemisphere, and ROI, regress-
ing the signal change within each ROI against the number of targets in each
hemifield. This enabled the estimation of individual ARF slopes, represent-
ing changes in BOLD signal per additional target, while controlling for var-
iations in the number of targets in the opposite hemifield. This analysis
isolates and quantifies the unique contribution of ipsilateral and contralat-
eral loads to the BOLD response across different ROIs and hemispheres.
Crucially, an ROI analysis allows for a systematic comparison of the two
hemispheres, because ROIs can provide meaningful corresponding units
for hemispheric comparison unlike a direct vertex-to-vertex comparison.

Following the individual estimation of ARF slopes, we applied separate
linear mixed-effect models for each type of load (contralateral and ipsilat-
eral) to assess whether homologous ROIs across the two hemispheres
differed in their response to changes in contra- and ipsilateral load.
These models included fixed effects for ROIs and hemispheres, as well as
their interaction, and a random effect for participants. We assessed the
significance of interaction effects by comparing these models to nested
models without the interaction term (Luke, 2017). Upon identifying sign-
ificant interactions, post hoc t tests on estimated marginal means were
performed, with Bonferroni’s correction applied for multiple comparisons.

Results
Tracking accuracy
Participant performance was near ceiling across all conditions,
with an overall mean accuracy of 91.26% (SD, 5.28; chance per-
formance, 50%). Performance decreased significantly as the tar-
get load increased in both hemifields. These effects were assessed
using mixed-effect binomial logistic regression models, incorpo-
rating fixed effects for the number of targets on each hemifield
and a random effect for participants. The model was compared
against two nested alternative models that excluded either the
left load or right load predictor, using likelihood ratio tests
(Luke, 2017). The results revealed that load in both hemifields
had a significant effect on accuracy during multiple-object track-
ing (left, χ²(1) = 22.54; p < 0.001; right, χ²(1) = 6.45; p= 0.011). The
model estimated a decrease in accuracy of 2.17% with the addi-
tion of the first target in the left hemifield and a further decrease
of 3.71% with the addition of the second target. In the right
hemifield, accuracy decreased by 0.97% for the first additional
target and by 1.28% for the second. We also examined potential
interaction between hemifields by adding an interaction term
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into the model, yet the test identified no significant difference
(χ²(1) = 0.42; p= 0.516). Average performance in each condition,
as well as trend lines showing the decrease in accuracy with
higher load are depicted in Figure 1D.

Eye movements
Due to technical difficulties with the eye tracking equipment, only
17 of the 20 participants’ data were included in the analysis of eye
movements. To verify that participants were fixating properly,

Figure 1. Task and task performance. A, Schematic diagram of the stimuli. B, Accuracy in the task decreased with increasing load (i.e., task difficulty). Data points have been slightly shifted
horizontally for visibility. C, Results of the eye tracking analysis showing horizontal deviations of gaze from the fixation point during the task. Participants were instructed to fixate a cross in the
center of the screen. Participants were looking at the area where the targets were presented (green x-axis labels) for ∼1% of the time. D, Heatmaps showing where participants’ gaze was
concentrated in each condition.
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their eye movements were recorded while they performed the task
inside the scanner. To quantify the deviation of gaze from the
fixation to the target area, we analyzed the density distributions
of horizontal gaze positions, normalized and averaged across
participants (Fig. 1C,E). Mean gaze position and 95% confidence
intervals were estimated using a linear mixed-effect model, incor-
porating subject-specific intercepts as random effects. Across con-
ditions, recorded eye gaze remained close to the fixation cross, with
participants spending an average of 0.93%of the trial duration (SD,
2.22, SE, 0.18; CI, [0.58, 1.28]) fixating on the target area. A quasi-
binomial GLM revealed no significant effect across conditions on
target fixation time (χ²(8) = 2.63; p=0.956), indicating that gaze
allocation remained stable across conditions.

Spatial attention can bias fixational eye movements (Engbert
and Kliegl, 2003). To characterize the maximal degree to which
the spatial distribution of targets might have influenced fixations,
we fit Gaussian distributions to the mean heatmap (Fig. 1D) of
each participant and condition and compared their means.
Trials with high load in one hemifield and no targets in the other
hemifield should show the strongest bias in fixational eye move-
ments if this bias was caused by imbalances in load. During trials
with two targets on the left and zero targets on the right side of
the screen, participants fixated significantly more toward the
left compared with trials with two targets on the right and
none on the left (t(16) = 2.54; p= 0.022). While this post hoc test
to the aforementioned GLM reached significance, the mean
difference was only 0.168 dva, with a 95% confidence interval
between 0.03 and 0.3 dva. Based on this, we conclude that the
fraction of fixations on the targets (<1%) and the difference in
fixation locations between conditions were so small that no fur-
ther corrections for eye movements were necessary.

Tracking-related brain activity
In line with previous studies (Culham et al., 2001; Alnæs et al.,
2014), we first calculated a linear contrast comparing tracking
any number of targets to passive viewing of the same stimuli
(i.e., no targets in either hemifield), revealing the “task areas”
depicted in Figure 2A. We found clusters of vertices in both the
dorsal attention network and the ventral attention network
(Fiebelkorn and Kastner, 2020) which reactedmuchmore strongly
to the task than to passive viewing of the stimuli. Consistent with
what has been shown previously (Culham et al., 2001; Jovicich et
al., 2001; Shim et al., 2010; Jahn et al., 2012; Alnæs et al., 2014;
Nummenmaa et al., 2017), we found strong andwidespread activa-
tions in the occipital, parietal, and frontal lobes.

Modulation by total attentional load
Before assessing hemifield preference in ARFs, it was necessary to
show that we found the canonical ARFs (Culham et al., 2001;
Jovicich et al., 2001; Shim et al., 2010; Jahn et al., 2012; Alnæs
et al., 2014; Nummenmaa et al., 2017). A wide array of brain areas
showed parametric modulation of activity depending on the total
number of tracked targets (Fig. 2B). Significant clusters of activa-
tions were found in the dorsal visual stream (including but not
limited to V3a, V3b, hMT), as well as the dorsal and ventral
attention network, IPS, SPL, FEF, and the anterior insula. The
activations were essentially bilateral with slightly larger clusters
in the right hemisphere. Additionally, areas, where activity was
modulated by the number of tracked targets, were a subset of
the task areas (compare Fig. 2A,B).

Modulation by contralateral and ipsilateral load
After establishing that our data replicate the canonical ARF
findings, we sought to investigate whether this effect is driven

by targets bilaterally or whether ARFs show hemifield-specific
effects like other aspects of multiple-object tracking (Alvarez
and Cavanagh, 2005; Holcombe and Chen, 2012; Störmer
et al., 2014). We found that contralateral load varies with brain
activity throughout the dorsal visual stream, as well as the dorsal
attention network. Activation maps were largely overlapping for
parametric modulation with total load and with contralateral
load (compare Figs. 2 and 3). Ipsilateral load on the other hand
also showed clusters where BOLD was modulated significantly,
but these clusters emerged much later in the visual processing
stream and were largely in attention-related frontal and parietal
areas like IPS and the supplementary eye fields.

Contralateral preference
Areas where BOLD activity was more strongly modulated by
contralateral than ipsilateral target tracking load were revealed
by directly contrasting the beta maps corresponding to modula-
tion with targets on the left and right with each other (Fig. 3C). In
both hemispheres, clusters in the dorsal visual stream (V3a/b,
hMT) showed stronger modulation with contralateral than
with ipsilateral load. Additionally, there were clusters in the
SPL in both hemispheres, with larger clusters in the right
hemisphere.

ROIs
By fitting a linear regression to the ROI data from each experi-
mental condition, we can estimate the relationship between the
BOLD signal and the number of targets in each hemifield.
Specifically, the slope of this fit line is the increase (or decrease)
in percentage signal change caused by one added target in a
specific hemifield while controlling for load in the other hemifi-
eld. This allowed us to determine the extent to which BOLD
increases with each additional target, separately for each hemifi-
eld and hemisphere. Examples of this analysis for two ROIs are
shown in Figure 4A.

Consistent with the results of the whole-brain analysis, there
were contralateral ARFs with slopes significantly greater than
zero in many ROIs throughout the dorsal and ventral visual
stream (Fig. 4). Similarly, evidence of increased BOLD with addi-
tional ipsilateral targets emerged later in the visual hierarchy, in
the IPS.

To determine if contra- and ipsilateral ARF slopes differed
between hemispheres, we assessed interaction effects between
ROIs and hemispheres for each type of ARF. Our linear
mixed-effect models, incorporating fixed effects for ROIs and
hemispheres and their interactions, were compared against
nested models that excluded the interaction terms. The model
comparison revealed a significant interaction for ipsilateral tar-
gets (χ²(19) = 43.27; p= 0.001), whereas no significant interactions
were found for contralateral targets (χ²(19) = 16.53; p= 0.621).
Post hoc t tests on estimated marginal means, corrected for mul-
tiple comparisons using the Bonferroni method, were performed
for ipsilateral ARFs to explore differences between hemispheres
within each ROI. These pairwise comparisons across hemi-
spheres for each ROI are presented in detail in Figure 4D.

Discussion
Our study is the first fMRI-based investigation of hemifield- and
hemisphere-specific effects in ARFs during multiple-object
tracking. Increases in the number of tracked targets during
multiple-object tracking led to increases in activity throughout
the visual system and the dorsal and ventral attention networks
(Fig. 2). Crucially, for many of the load-sensitive brain regions
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Figure 2. Canonical ARFs. Task (A) and load-dependent (B) ARFs projected onto FreeSurfer’s fsaverage surface mesh. C, The ROIs outlined on brains in A and B are from a probabilistic atlas by
Wang et al. (2015).

Maechler et al. • Hemifield Specificity of Attention during Tracking J. Neurosci., May 7, 2025 • 45(19):e1340242025 • 7



Figure 3. Hemifield-dependent ARFs. Contralateral (A) and ipsilateral (B) ARFs as well as their direct comparison (C). Overlayed ROIs are the same as in Figure 2.
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in both hemispheres, this response was dependent on the hemifi-
eld in which the target was added (Fig. 3A,B), and a subset of
those areas were significantly more modulated by contra- than

ipsilateral load (Fig. 3C). While activity in early visual areas
was modulated exclusively by contralateral load, both contralat-
eral and ipsilateral load modulated activity in the frontoparietal

Figure 4. ROI analyses. A, ARF slopes were computed for each ROI by fitting first-order polynomials to the activity caused by the number of left or right targets. The slope of this line is the
average increase in activity caused by increasing the number of targets. Left hMT shows a modulation of its response by right load, but not by left load, while right IPS2 shows a response to
changes in load on both sides. Data points have been slightly shifted along the load axis for visibility. B, Comparing the slope of the ARFs for left and right targets in each ROI. We use a threefold
separation of the ROIs for plotting purposes, inspired by the original presentation of the ROIs (Wang et al., 2015). We do this to reduce clutter in our plots and do not intend to imply functional
distinctions among the ROIs. C, The same data as (B) but organized additionally by the spatial relationship between hemifields and ROIs. This makes it possible to compare the slope of ARFs with
contra- and ipsilateral targets in each ROI. D, Directly compares corresponding ROIs from each hemisphere. While there was no difference between the hemispheres in their response to con-
tralateral targets, some right hemisphere ROIs showed a significant negative ARF slope in response to increases in ipsilateral load. Left hemisphere ROIs are indicated with circles, right hemi-
sphere ROIs with diamonds. Asterisks indicate significant, pairwise, Bonferroni-corrected differences between equivalent ROIs from the two hemispheres, independent of their difference from a
baseline slope of zero. Error bars correspond to the 95% confidence intervals around the estimated slope.
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attention network. This suggests either that these areas are
involved in attentional tracking of objects in both visual hemifi-
elds or that these areas engage in cross talk between the hemi-
spheres that is relatively absent in earlier visual processing
areas. ROI analyses further showed a transition from early to
late areas in the visual processing hierarchy. Specifically, early
areas have a strong contralateral bias whereas later areas do
not; their activity is modulated by both ipsi- and contralateral
tracking load (Fig. 4). These later areas are part of the frontopar-
ietal attention network and have previously been found to be
active during multiple-object tracking (Alnæs et al., 2014) but
also in paradigms targeting other aspects of attention
(Fiebelkorn and Kastner, 2020). Both hemispheres showed sim-
ilar patterns of ARFs to contra- and ipsilateral load. We found no
evidence for Mesulam’s (1981) hypothesis that the right hemi-
sphere attentional system processes more “globally” than the
left’s. The only exception to this functional symmetry was that
right hemisphere occipital ROIs showed a decrease in activity
with increases in ipsilateral load that was not seen anywhere in
the left hemisphere.

Most previous investigations of ARFs did not analyze whether
targets were ipsi- or contralateral to the ROIs and so were unable
to reveal the hemifield-specific processing in earlier visual areas
that we find here. The only previous study to include this kind
of analysis (Shim et al., 2010) did not find statistically significant
hemifield effects, perhaps because they only varied the number of
targets between one and two. Our findings validate investigations
into ARFs (Culham et al., 2001; Jovicich et al., 2001; Shim et al.,
2010; Jahn et al., 2012; Alnæs et al., 2014) and extend our under-
standing of ARFs to include hemifield and hemisphere
specificity.

Our findings also bridge electrophysiological findings of load-
dependent increases of steady-state visual evoked potentials in
EEG electrodes over occipital areas (Störmer et al., 2013; Störmer
et al., 2014; Adamian and Andersen, 2022) with previous fMRI
experiments showing load-dependent activity mostly in parietal
and frontal areas (Culham et al., 2001; Jovicich et al., 2001; Shim
et al., 2010; Jahn et al., 2012; Alnæs et al., 2014). Our data are con-
sistent with these findings and provide new evidence indicating
that higher-level areas in IPS and SPL are involved in contralateral
processing. Our results also support and extend previous results
showing that contra- and ipsilateral targets influence BOLD activ-
ity in parietal lobe ROIs (Shim et al., 2010).

Overall, we observed larger clusters and stronger effects in the
right hemisphere. However, this needs to be interpreted with
caution, because the hemispheres are not structurally symmetric.
Amore appropriate comparison of the left and right hemispheres
can be accomplished using ROIs that map functional equivalents
across the two hemispheres (Wang et al., 2015). When compar-
ing the left and right hemispheres, we found one consistent
difference: several ROIs in the right hemisphere show a negative
ARF (decreasing activity) with increasing ipsilateral load. In
other words, as the left hemisphere increases its tracking efforts,
the right hemisphere shows a relative decrease in BOLD
response. Future modeling efforts will be necessary to connect
this effect with existing findings of hemispheric and hemifield
imbalances of attentional processing (Posner and Petersen,
1990; Petersen and Posner, 2012; Hoyos et al., 2021).

The most prominent lateralization of the attention system is
revealed by hemispatial neglect, which occurs much more fre-
quently after right parietal stroke than left parietal stroke. Several
explanations for this asymmetry have been suggested (Heilman
and Van Den Abell, 1980; Mesulam, 1981; Kinsbourne, 1987;

Parton et al., 2004; Corbetta and Shulman, 2011; Duecker and
Sack, 2015; Esposito et al., 2021). Theoretical accounts of neglect
propose different degrees of hemispheric contralateral bias for spa-
tial attention. One theory proposes that the left hemisphere con-
trols attentional shifts toward the right hemifield, while the right
hemisphere controls attentional shifts toward both hemifields. A
competing account claims that each hemisphere has a contralateral
bias for attentional shifting but also represents the ipsilateral
hemifield (Heilman and Van Den Abell, 1980; Mesulam, 1981;
Corbetta and Shulman, 2011; Szczepanski and Kastner, 2013;
Duecker and Sack, 2015). Our data reveal a contralateral bias in
both hemispheres, as well as responses to ipsilateral targets in
both hemispheres, so are more consistent with the latter theory.
The decrease in activity with increases in ipsilateral load that is
observed in right hemisphere ROIs might also be related to or
caused by this interhemispheric competition. Negative ARFs dur-
ing tracking have been found in brain areas that process vestibular
inputs (Frank et al., 2016), which coincides with decreases of glu-
tamate and glutamine in those areas (Frank et al., 2021). Future
spectroscopy experiments could determine whether the negative
ARFswe report here are also related to such changes in neurotrans-
mitter concentrations in right visual ROIs. The presented experi-
ment, however, is not suited well for revealing competition
between hemispheres and is based on findings showing hemi-
spheric resource independence (Alvarez and Cavanagh, 2005;
Holcombe and Chen, 2012; Hudson et al., 2012; Störmer et al.,
2014).

Right hemisphere dominance has also been reported in inves-
tigations of healthy attention systems. Posner and Petersen
(Posner and Petersen, 1990; Petersen and Posner, 2012) pro-
posed a taxonomy for spatial attention that is segregated into ori-
enting, alertness, and executive control. In their review paper
(Petersen and Posner, 2012), they also note that many studies
have found aspects of spatial attention to be right-lateralized in
the brain. Leftward biases in spatial attention are common
among young children but through development these biases
become weaker (Hoyos et al., 2021). Contralateral biases in visual
processing have also been investigated in the context of visuospa-
tial working memory, which likely shares mechanisms with spa-
tial attention. While some experiments find contralateral biases
during lateralized working memory tasks in both hemispheres
(Killebrew et al., 2015), others find contralateral bias only in
the left hemisphere (Sheremata et al., 2010).

Another kind of hemispheric specialization for multiple-
object tracking has been proposed by Merkel and colleagues
(Merkel et al., 2015; Merkel et al., 2024). Their hypothesis distin-
guishes between tracking the locations of each individual target
as opposed to tracking the shape of an illusory polygon, the ver-
tices of which are the locations of the targets. There is some evi-
dence indicating a left hemifield, right hemisphere dominance of
the shape-based tracking strategy (Merkel et al., 2024). While
these findings are intriguing, our study was not designed to dis-
tinguish between these two strategies. Our results focused on
where the tracking processes occurred not how, and our conclu-
sions are independent of the mechanisms involved.

In addition to hemifield biases, attention is also characterized
by relative hemifield independence in tracking capacity.
Specifically, the capacity for multiple-object tracking and the
maximum speed of trackable objects both nearly double when
targets are spread across hemifields rather than being limited
to one hemifield (Alvarez and Cavanagh, 2005; Holcombe and
Chen, 2012; Hudson et al., 2012; Störmer et al., 2014).
Hemifield-specific effects are not observed in tasks where the

10 • J. Neurosci., May 7, 2025 • 45(19):e1340242025 Maechler et al. • Hemifield Specificity of Attention during Tracking



primary cognitive effort is undertaken by higher-order regions
without hemifield-specific representations (Luck et al., 1989;
Duncan et al., 1999). In particular, capacity and speed limits
would not show hemifield specificity if the tracking limit were
imposed in higher-level areas because we find that these areas
respond to targets bilaterally. Based on our results, we conjecture
that the areas with contralateral preference that we found in the
visual system (e.g., V3a/b and hMT) are likely primarily respon-
sible for the overall tracking limits found in behavioral studies. If
later bilateral areas significantly constrained tracking capacity,
the advantage would necessarily be less than a factor of two.

This can be further demonstrated using multiple-identity
tracking, which is similar to multiple-object tracking but with
the added requirement to also keep track of which target is which.
Hemifield-specific effects are less pronounced in multiple-
identity tracking, and the capacity limit is dramatically lower
(Hudson et al., 2012). The capacity for multiple-object tracking
nearly doubles when targets are spread across hemifields, but
during multiple-identity tracking, the proportional increase is
much smaller (Hudson et al., 2012; Holcombe, 2023). This sug-
gests that the key processing bottlenecks for multiple-identity
tracking, possibly related to working memory, are outside
of the areas where multiple-object tracking activity shows
contralateral bias. In comparison to multiple-object tracking,
multiple-identity tracking also causes significantly more activa-
tion in the frontal lobe (Nummenmaa et al., 2017).

A common description of spatial attention involves “gain” or
“saliency” maps that send feedback to sensory maps to enhance
or suppress processing at relevant locations (Itti and Koch,
2001; Cavanagh et al., 2023). Load-sensitive areas may reflect
activity in gain maps that represent the tracked targets as well
as the consequences for sensory maps that receive feedback
from gain maps. Task-dependent modulation of sensory maps
in the occipital lobe might include changes to the properties of
their population receptive fields, such as changes in their size
and eccentricity (Grill-Spector et al., 2017). In either case, our
results suggest that hemifield maps in the visual system underlie
the capacity and speed bottlenecks. Such bottlenecks arise in
these hemifield maps because the suppression surrounding
each focus of attention interferes with nearby attentional selec-
tion (Mounts, 2000), and importantly, this attentional interfer-
ence does not cross the vertical meridian (Carlson et al., 2007;
Franconeri et al., 2013).

Our results suggest that regions in the occipital lobe where we
found significantly stronger contralateral than ipsilateral ARFs
(Fig. 3C) may serve as the primary source of attentional bottle-
necks. These regions span both the dorsal and ventral visual
streams, consistent with the dual demands of multiple-object
tracking: segmenting objects from their background and tracking
their motion. The involvement of both motion-sensitive and
object-selective cortical areas aligns with these complementary
processing requirements.

We propose that the capacity bottleneck for multiple-object
tracking might arise in areas such as V3a (Caplovitz and Tse,
2007) and hMTwhere themodulation of activity with contralateral
load was significantly stronger compared with ipsilateral load.
However, we deliberately chose stimulus parameters that would
allow participants to track four targets with high accuracy
(Franconeri et al., 2008). Because of this, accuracy was near ceiling,
and we observed no notable hemifield-specific capacity. With
higher difficulty, we might have replicated hemifield-independent
resources (Alvarez and Cavanagh, 2005; Holcombe, 2023).
Nevertheless, such increased task demands would likely cause

participants to lose track of targets. To make reliable claims about
the number of targets being tracked, it was crucial to ensure that
participants would be genuinely capable of tracking that specific
number of targets. Future experiments should include conditions
with greater levels of difficulty that make it possible to link
hemifield-specific capacity limits to brain activity. If our prediction
holds, activity in the dorsal visual stream,wheremodulatory effects
are significantly stronger for contralateral than ipsilateral targets,
should reveal the relatively independent tracking limits of each
hemifield. Specifically, we would expect that load-dependent
ARFs show an increase in BOLD signal with the number of targets
in the contralateral hemifield up to the capacity limit and then
asymptote with more targets, to some extent independently of
the number of targets in the other hemifield.

In conclusion, our study confirms and extends previous
research on the neural correlates of multiple-object tracking.
We find that brain activity in the visual, parietal, and frontal cor-
tex is strongly modulated by the number of tracked targets and
that many load-sensitive areas respond to targets in both hemifi-
elds. Furthermore, we identified a subset of load-dependent areas
that exhibit a contralateral bias. Our findings suggest that these
areas may be candidate regions for hemifield-specific limitations
in attentional tracking performance, which then impose the bot-
tleneck on tasks with bilateral target presentation. Capacity and
speed limits would not be hemifield specific if the tracking limit
were imposed in areas that respond to targets bilaterally. Overall,
our findings shed light on the neural mechanisms underlying
multiple-object tracking and provide insights into the hemifield-
and hemisphere-specific effects of spatial attention.

References
Adamian N, Andersen SK (2022) Attentional enhancement of tracked stimuli

in early visual cortex has limited capacity. J Neurosci 42:8709–8715.
Alnæs D, Sneve MH, Espeseth T, Endestad T, van de Pavert SHP, Laeng B

(2014) Pupil size signals mental effort deployed during multiple object
tracking and predicts brain activity in the dorsal attention network and
the locus coeruleus. J Vis 14:1–1.

Alvarez GA, Cavanagh P (2005) Independent resources for attentional track-
ing in the left and right visual hemifields. Psychol Sci 16:637–643.

Andersson JL, Skare S, Ashburner J (2003) How to correct susceptibility dis-
tortions in spin-echo echo-planar images: application to diffusion tensor
imaging. Neuroimage 20:870–888.

Argall BD, Saad ZS, Beauchamp MS (2006) Simplified intersubject averaging
on the cortical surface using SUMA. Hum Brain Mapp 27:14–27.

Avants BB, Epstein CL, GrossmanM, Gee JC (2008) Symmetric diffeomorphic
image registration with cross-correlation: evaluating automated labeling of
elderly and neurodegenerative brain. Med Image Anal 12:26–41.

Bennett CM, Miller MB, Wolford GL (2009) Neural correlates of interspecies
perspective taking in the post-mortem Atlantic Salmon: an argument for
multiple comparisons correction. Neuroimage 47:S125.

Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436.
Brodoehl S, Gaser C, Dahnke R, Witte OW, Klingner CM (2020)

Surface-based analysis increases the specificity of cortical activation pat-
terns and connectivity results. Sci Rep 10:5737.

CaplovitzGP, Tse PU (2007)V3aprocesses contour curvature as a trackable fea-
ture for the perception of rotational motion. Cereb Cortex 17:1179–1189.

Carlson TA, Alvarez GA, Cavanagh P (2007) Quadrantic deficit reveals anatom-
ical constraints on selection. Proc Natl Acad Sci U S A 104:13496–13500.

Cavanagh P, Alvarez GA (2005) Tracking multiple targets with multifocal
attention. Trends Cogn Sci (Regul Ed) 9:349–354.

Cavanagh P, Caplovitz GP, Lytchenko TK, Maechler MR, Tse PU, Sheinberg
D (2023) The architecture of object-based attention. Psychon Bull Rev 30:
1643–1667.

Chung MK, Worsley KJ, Nacewicz BM, Dalton KM, Davidson RJ (2010)
General multivariate linear modeling of surface shapes using SurfStat.
Neuroimage 53:491–505.

Corbetta M, Shulman GL (2011) Spatial neglect and attention networks.
Annu Rev Neurosci 34:569–599.

Maechler et al. • Hemifield Specificity of Attention during Tracking J. Neurosci., May 7, 2025 • 45(19):e1340242025 • 11



Cox RW, Hyde JS (1997) Software tools for analysis and visualization of fMRI
data. NMR Biomed 10:171–178.

Cremers HR, Wager TD, Yarkoni T (2017) The relation between statistical
power and inference in fMRI. PLoS One 12:e0184923.

Culham JC, Cavanagh P, Kanwisher NG (2001) Attention response functions:
characterizing brain areas using fMRI activation during parametric vari-
ations of attentional load. Neuron 32:737–745.

Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis:
I. Segmentation and surface reconstruction. Neuroimage 9:179–194.

Duecker F, Sack AT (2015) The hybrid model of attentional control: new
insights into hemispheric asymmetries inferred from TMS research.
Neuropsychologia 74:21–29.

Duncan J, Bundesen C, Olson A, Humphreys G, Chavda S, Shibuya H (1999)
Systematic analysis of deficits in visual attention. J Exp Psychol 128:450–478.

Engbert R, Kliegl R (2003) Microsaccades uncover the orientation of covert
attention. Vision Res 43:1035–1045.

Esposito E, Shekhtman G, Chen P (2021) Prevalence of spatial neglect post-
stroke: a systematic review. Ann Phys Rehabil Med 64:101459.

Esteban O, et al. (2019) fMRIPrep: a robust preprocessing pipeline for func-
tional MRI. Nat Methods 16:111–116.

Faul F, Erdfelder E, Lang AG, Buchner A (2007) G* Power 3: a flexible statis-
tical power analysis program for the social, behavioral, and biomedical
sciences. Behav Res Methods 39:175–191.

Fiebelkorn IC, Kastner S (2020) Functional specialization in the attention net-
work. Annu Rev Psychol 71:221–249.

Franconeri SL, Alvarez GA, Cavanagh P (2013) Flexible cognitive resources:
competitive content maps for attention and memory. Trends Cogn Sci
(Regul Ed) 17:134–141.

Franconeri SL, Lin JY, Enns JT, Pylyshyn ZW, Fisher B (2008) Evidence
against a speed limit in multiple-object tracking. Psychon Bull Rev 15:
802–808.

Frank SM, Forster L, PawellekM,MalloniWM, Ahn S, Tse PU, GreenleeMW
(2021) Visual attention modulates glutamate-glutamine levels in vestibu-
lar cortex: evidence frommagnetic resonance spectroscopy. J Neurosci 41:
1970–1981.

Frank SM, Sun L, Forster L, Peter UT, Greenlee MW (2016) Cross-modal
attention effects in the vestibular cortex during attentive tracking of mov-
ing objects. J Neurosci 36:12720–12728.

Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom
ML, Ghosh SS (2011) Nipype: a flexible, lightweight and extensible
neuroimaging data processing framework in python. Front
Neuroinform 5:13.

Greve DN, Fischl B (2009) Accurate and robust brain image alignment using
boundary-based registration. Neuroimage 48:63–72.

Grill-Spector K, Weiner KS, Kay K, Gomez J (2017) The functional neuro-
anatomy of human face perception. Annu Rev Vis Sci 3:167–196.

Heilman KM, Van Den Abell T (1980) Right hemisphere dominance for
attention: the mechanism underlying hemispheric asymmetries of inat-
tention (neglect). Neurology 30:327–327.

Holcombe AO (2023) Elements in perception. Cambridge, UK: Cambridge
University Press.

Holcombe AO, Chen WY (2012) Exhausting attentional tracking resources
with a single fast-moving object. Cognition 123:218–228.

Hoyos PM, Kim NY, Cheng D, Finkelston A, Kastner S (2021) Development
of spatial biases in school-aged children. Dev Sci 24:e13053.

Hudson C, Howe PD, Little DR (2012) Hemifield effects in multiple identity
tracking.

Intriligator J, Cavanagh P (2001) The spatial resolution of visual attention.
Cogn Psychol 43:171–216.

Itti L, Koch C (2001) Computational modelling of visual attention. Nat Rev
Neurosci 2:194–203.

Jahn G,Wendt J, LotzeM, Papenmeier F, Huff M (2012) Brain activation dur-
ing spatial updating and attentive tracking of moving targets. Brain Cogn
78:105–113.

Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization
for the robust and accurate linear registration and motion correction of
brain images. Neuroimage 17:825–841.

Jovicich J, Peters RJ, Koch C, Braun J, Chang L, Ernst T (2001) Brain areas
specific for attentional load in a motion-tracking task. J Cogn Neurosci
13:1048–1058.

Killebrew K, Mruczek R, Berryhill ME (2015) Intraparietal regions play a
material general role in workingmemory: evidence supporting an internal
attentional role. Neuropsychologia 73:12–24.

Kinsbourne M (1987) Mechanisms of unilateral neglect. In: Advances in psy-
chology: neurophysiological and neuropsychological aspects of spatial neglect
(Jeannerod M, ed), Vol. 45, pp. 69–86. Amsterdam: Elsevier Science.

Klein A, et al. (2017) Mindboggling morphometry of human brains. PLoS
Comput Biol 13:e1005350.

Luck SJ, Hillyard SA, Mangun GR, Gazzaniga MS (1989) Independent hemi-
spheric attentional systems mediate visual search in split-brain patients.
Nature 342:543–545.

Luke SG (2017) Evaluating significance in linear mixed-effects models in R.
Behav Res Methods 49:1494–1502.

Ma F, Guo J, Gobbini MI, Haxby JV (2023) A cortical surface template for
human neuroscience. bioRxiv, 2023-03.

Maechler MR, Cavanagh P, Tse PU (2021) Attentional tracking takes place
over perceived rather than veridical positions. Attent Percep
Psychophys 83:1455–1462.

Merkel C, Hopf JM, Heinze HJ, Schoenfeld MA (2015) Neural correlates of
multiple object tracking strategies. Neuroimage 118:63–73.

Merkel C, Hopf JM, Schoenfeld MA (2024) Location-and object-based repre-
sentational mechanisms account for bilateral field advantage in
multiple-object tracking. eNeuro 11:ENEURO.0519-23.2024.

MesulamMM (1981) A cortical network for directed attention and unilateral
neglect. Ann Neurol 10:309–325.

Mounts JR (2000) Evidence for suppressive mechanisms in attentional selec-
tion: feature singletons produce inhibitory surrounds. Attent Percept
Psychophys 62:969–983.

Naert L, Bonato M, Fias W (2018) Asymmetric spatial processing under cog-
nitive load. Front Psychol 9:348828.

Nummenmaa L, Oksama L, Glerean E, Hyönä J (2017) Cortical circuit for
binding object identity and location during multiple-object tracking.
Cereb Cortex 27:162–172.

Parton A, Malhotra P, Husain M (2004) Hemispatial neglect. J Neurol
Neurosurg Psychiat 75:13–21.

Pelli DG (1997) The VideoToolbox software for visual psychophysics: trans-
forming numbers into movies. Spat Vis 10:437–442.

Petersen SE, Posner MI (2012) The attention system of the human brain: 20
years after. Annu Rev Neurosci 35:73–89.

Posner MI, Petersen SE (1990) The attention system of the human brain.
Annu Rev Neurosci 13:25–42.

RosenkeM, VanHoof R, Van DenHurk J, Grill-Spector K, Goebel R (2021) A
probabilistic functional atlas of human occipito-temporal visual cortex.
Cereb Cortex 31:603–619.

Saxe R, Brett M, Kanwisher N (2006) Divide and conquer: a defense of func-
tional localizers. Neuroimage 30:1088–1096.

Scholl BJ (2009) What have we learned about attention from multiple-object
tracking (and vice versa)?

Sheremata SL, Bettencourt KC, Somers DC (2010) Hemispheric asymmetry
in visuotopic posterior parietal cortex emerges with visual short-term
memory load. J Neurosci 30:12581–12588.

Shim WM, Alvarez GA, Vickery TJ, Jiang YV (2010) The number of atten-
tional foci and their precision are dissociated in the posterior parietal cor-
tex. Cereb cortex 20:1341–1349.

Störmer VS, Alvarez GA, Cavanagh P (2014) Within-hemifield competition
in early visual areas limits the ability to track multiple objects with atten-
tion. J Neurosci 34:11526–11533.

Störmer VS, Winther GN, Li SC, Andersen SK (2013) Sustained multifocal
attentional enhancement of stimulus processing in early visual areas pre-
dicts tracking performance. J Neurosci 33:5346–5351.

StrongRW,AlvarezGA (2020)Hemifield-specific control of spatial attention and
working memory: evidence from hemifield crossover costs. J Vis 20:1–24.

Szczepanski SM, Kastner S (2013) Shifting attentional priorities: control of spatial
attention through hemispheric competition. J Neurosci 33:5411–5421.

Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC
(2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imag 29:
1310–1320.

Wang L, Mruczek RE, Arcaro MJ, Kastner S (2015) Probabilistic
maps of visual topography in human cortex. Cereb Cortex 25:3911–3931.

Wilkinson GN, Rogers CE (1973) Symbolic description of factorial models for
analysis of variance. J R Stat Soc Ser C 22:392–399.

Worsley KJ (2001) Statistical analysis of activation images. Funct MRI 14:
251–270.

Zhang Y, BradyM, Smith S (2001) Segmentation of brainMR images through
a hidden Markov random field model and the expectation-maximization
algorithm. IEEE Trans Med Imag 20:45–57.

12 • J. Neurosci., May 7, 2025 • 45(19):e1340242025 Maechler et al. • Hemifield Specificity of Attention during Tracking


	 Introduction
	 Materials and Methods
	Outline placeholder
	Outline placeholder
	 Participants
	 Experimental design
	 Stimulus presentation
	 MRI acquisition
	 MRI preprocessing with fMRIPrep
	 Further MRI preprocessing
	 Statistical analyses



	 Results
	 Tracking accuracy
	 Eye movements
	 Tracking-related brain activity
	 Modulation by total attentional load
	 Modulation by contralateral and ipsilateral load
	 Contralateral preference
	 ROIs

	 Discussion
	 References

