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A B S T R A C T

Background: Electroencephalography (EEG) is widely used to investigate human brain function. Simulation
studies are essential for assessing the validity of EEG analysis methods and the interpretability of results.
New method: Here we present a simulation environment for generating EEG data by embedding biologically
plausible signal and noise into MRI-based forward models that incorporate individual-subject variability in
structure and function.
Results: The package includes pipelines for the evaluation and validation of EEG analysis tools for source esti-
mation, functional connectivity, and spatial filtering. EEG dynamics can be simulated using realistic noise and
signal models with user specifiable signal-to-noise ratio (SNR). We also provide a set of quantitative metrics
tailored to source estimation, connectivity and spatial filtering applications.
Comparison with existing method(s): We provide a larger set of forward solutions for individual MRI-based head
models than has been available previously. These head models are surface-based and include two sets of regions-
of-interest (ROIs) that have been brought into registration with the brain of each individual using surface-based
alignment – one from a whole brain and the other from a visual cortex atlas. We derive a realistic model of noise
by fitting different model components to measured resting state EEG. We also provide a set of quantitative
metrics for evaluating source-localization, functional connectivity and spatial filtering methods.
Conclusions: The inclusion of a larger number of individual head-models, combined with surface-atlas based
labeling of ROIs and plausible models of signal and noise, allows for simulation of EEG data with greater realism
than previous packages.

1. Introduction

Electroencephalography (EEG) provides non-invasive access to the
electrical activity of the brain with millisecond precision. EEG mea-
surements have been widely used in clinical and research settings, and a
remarkable number of analytical approaches have been developed for
their analysis and interpretation. However, EEG measures volume-
conducted brain electrical activity at the scalp and therefore the ground
truth underlying the EEG signal, i.e. its cortical sources, is generally not

known. The direct measurement of these cortical sources requires in-
vasive intracranial or intracerebral recordings, which are difficult to
obtain in human. Consequently, simulation studies have played a major
role in providing ground truth data for the development and validation
of EEG-based analysis techniques.

Among the most common EEG analysis approaches are (1) source
estimation which is used to determine the likely location of the cortical
generators of scalp activity (Michel et al., 2004; Grech et al., 2008), (2)
functional connectivity analysis, which is used to measure
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synchronization of neuronal activity between different brain areas
(Sakkalis, 2011; He et al., 2019), and (3) spatial filtering, which is used
to provide a low dimensional representation of multi-electrode data
with improved interpretability and/or signal to noise ratio (Cohen,
2017). Simulations have historically played a major role in the devel-
opment of each of these methods.

Determining the underlying cortical sources of scalp EEG – the in-
verse problem – is an ill-posed problem because there are an infinite
number of possible source distributions that can generate a specific
scalp distribution and only a small number of measurements. To
overcome this ill-posed problem and specify a unique solution, reg-
ularization is usually used (Groetsch and Groetsch, 1993; Hansen,
2005). Based on regularization parameters, inverse solution models
introduce assumptions such as smoothness (de Peralta Menendez et al.,
2001; Pascual-Marqui et al., 2002), or sparsity (Gorodnitsky and Rao,
1997; Lim et al., 2017). Based on each of these assumptions, the results
of source estimation can be significantly different (Michel et al., 2004;
Grech et al., 2008). Besides these assumptions, other factors can dras-
tically affect EEG source estimation such as the choice of head model,
forward solution, source location and orientation (Henson et al., 2009;
Ahlfors et al., 2010b; Acar and Makeig, 2013). In order to assess the
effect of these factors on source estimation, simulation studies have
been widely used. However, the ultimate validity of source estimation
methods, in terms of real data applications, depends critically on the
realism of the EEG simulation. The realism of EEG simulations for
source estimation has varied widely, ranging from placement of current
dipoles in a spherical head model (Mosher et al., 1999) to more ex-
tended sources in more realistic head models (Grech et al., 2008;
Ahlfors et al., 2010b, 2010a; Stenroos and Hauk, 2013). Published
implementations use a wide variety of models and parameters, but the
source code and details of the parameters used are typically not avail-
able. This makes it difficult to reproduce these implementations and
thus to compare the results obtained from different implementations.
Simulation toolboxes for application of source estimation are included
within some EEG analysis toolboxes, like Fieldtrip, MNE-Suite or
Brainstorm. These simulations are usually implemented as assessment
tools for specific methods implemented within that toolbox, rather than
a general multi-purpose simulation environment.

Functional connectivity (FC) estimation is a particularly challenging
problem and is usually implemented in conjunction with EEG source
estimation. The challenge lies in the fact that FC approaches are af-
fected by both errors in the source estimation process and errors spe-
cific to the FC measures themselves (Schoffelen and Gross, 2009; Palva
and Palva, 2012; Bastos and Schoffelen, 2016; Barzegaran and
Knyazeva, 2017). Simulation studies for evaluating this class of
methods incur the burden of simulating the intrinsic signal dynamics
and connectivity pattern of the brain itself, as well as the background
and measurement noises. The ground truth of these dynamics and their
effect on FC estimation is not known with any great precision in EEG
applications. Beyond toy examples for assessment of FC analyses
(Schoffelen and Gross, 2009; Palva and Palva, 2012; Cho et al., 2015;
Barzegaran and Knyazeva, 2017), a number of simulation toolboxes
have been developed for FC analysis. Haufe et al. (Haufe and Ewald,
2016) have developed an open source simulation framework which
uses realistic head models and noise modelling at both the source and
sensor levels. The EEG simulations of this framework are limited to
models with two interconnected sources that can be placed coarsely in
one of the brain quadrants. Implementation of more complex sources is
not yet available in this toolbox. Another simulation toolbox for con-
nectivity analysis is Source Information Flow Toolbox (SIFT) (Delorme
et al., 2011). This toolbox was developed to be used in parallel with
EEGLAB and for estimation of FCs based on real EEG data, but it is not a
stand-alone simulation toolbox, being dependent on EEGLAB.

Another widely used EEG analysis approach, is spatial filtering.
Spatial filtering is a popular tool for separating signal and noise sub-
spaces, resulting in dimensionality reduction, denoising and potentially

interpretable scalp topographies. The linear filters are typically found
by optimizing weightings of the contribution of each electrode with
regard to some assumed signal property, e.g. orthogonality (PCA) or
independence (ICA) of the underlying sources, inter-trial similarity
(RCA) or disjoint spectral power distributions of signal and noise
components (SSD). However, it is not always clear which filtering
method is best suited for a specific application and simulation studies
can provide guidelines for selecting the appropriate spatial filtering
method. In a simulation study, Cohen (Cohen, 2017) has compared the
performance of a number of linear spatial filters in terms of accuracy,
SNR and interpretability of the filters. However, this paper does not
supply the simulation implementations as a toolbox or software
package. To our knowledge, there are no realistic EEG simulation en-
vironment that allows systematic evaluation of spatial filtering
methods. SimBCI (Lindgren et al., 2018) is a recent simulation frame-
work, designed specifically for brain computer interface (BCI) appli-
cations. However, this toolbox only allows a limited options of source
location and signal types and uses average head models rather than
individually-defined head models.

The aforementioned toolboxes have been developed for the assess-
ment of specific EEG analysis approaches. They consider a specific type
of signal dynamics, or noise model that satisfies the assumptions of the
targeted analysis approach. To our knowledge, only a few generic
multi-purpose EEG simulation toolboxes are available. Among them is
SEREEGA (Krol et al., 2018), a simulation framework designed for
generating ERP data, using five distinct average head models, some
template signals and different components of noise. Human Neocortical
Neurosolver (https://hnn.brown.edu/), is a toolbox that incorporates
more complex computational models to brain circuits to simulate brain
responses and some spontaneous EEG activity (like beta and gamma
rhythms) (Lee and Jones, 2013; Sherman et al., 2016). However, this
toolbox is mostly developed to test hypotheses about circuit mechan-
isms underlying EEG signal rather than a simulation environment for
testing EEG analysis approaches in presence of individual variabilities,
i.e. individual head models and ROI definition, and different models of
signal and noise.

Here, we introduce a simulation framework (EEGSourceSim) that
increases realism relative to previous simulation environments by in-
corporating a large data set of individual head models, realistic source
geometry modeling based on functionally and anatomically defined
ROIs rather than arbitrary vertices and more realistic models of signal
and noise. This open-source framework can be utilized to interpret the
results of different approaches to source estimation, spatial filtering and
functional connectivity analysis and to compare them on a set of
quantitative evaluation metrics.

2. Methods

2.1. Code and data set availability

EEGSourceSim is an open source toolbox, implemented using
MATLAB. This toolbox can be run on any operating system and requires
MATLAB version R2016b or newer. In addition to the simulation soft-
ware and metrics for assessing each method, we provide 23 individual-
participant Boundary Element Method forward matrixes computed by
MNE Suite with corresponding cortical surface meshes (the source
space). For each individual, we have labelled the cortical surface with
ROIs from a visual area atlas (Wang et al., 2014). We also provide labels
for a set of ROIs covering all of cerebral cortex, from a multimodal
parcellation based on both anatomical and functional properties of
cortex (Glasser et al., 2016). The toolbox and the data set are available
at https://osf.io/fmuae (DOI 10.17605/OSF.IO/FMUAE). The details
about the execution time of this toolbox are available at https://osf.io/
fmuae/wiki/Execution%20time.
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2.2. Anatomical data

2.2.1. Data acquisition
Functional and structural MRI data were collected on a General

Electric Discovery 750 (General Electric Healthcare) equipped with a
32-channel head coil (Nova Medical) at the Center for Cognitive and
Neurobiological Imaging at Stanford University. For each of our 23
participants, we acquired two whole-brain T1-weighted structural da-
tasets (1.0× 1.0×1.0mm resolution, TE= 2.5ms, TR=6.6ms, flip
angle= 12, FOV=256×256) and one single whole-brain T2-
weighted structural dataset (1.0× 1.0×1.0mm resolution,
TE= 75ms, TR=2500ms, flip angle= 90, FOV=256×256). These
three scans were used for the tissue segmentation procedure necessary
to create individual forward models. For each participant, we also used
a Polhemus FASTRAK system to digitize the locations of electrodes in
128-channel EGI Sensor Net arrays.

2.2.2. Individual forward models
In order to generate individual forward models, we first extracted

cortical surfaces using FreeSurfer’s recon-all function (http://surfer.
nmr.mgh.harvard.edu). Gray matter, white matter, and CSF boundaries
were extracted with two T1-weighted (T1w) images and the T2-
weighted (T2w) image as inputs to recon-all function. Using the T2w
image in addition to the T1w images in recon-all function reduces the
segmentation error. We then generated a smooth cortical surface with
equal curvature for gyri and sulci by defining a mid-gray surface
halfway between the gray and white matter boundaries, using
Freesurfer’s mris_expand function. This function expands the white
matter outwards by a fraction of the cortical thickness (here 0.5), while
maintaining self-intersection and smoothness constraints. We then
down-sampled this surface to 20,484 uniformly spaced vertices and
placed current dipoles on each of the vertices orientated orthogonally
to the surface. Because of the smooth curvature of the mid-grey surface,
i.e. it has no sharp curvature at gyri or sulci, the orientation of the
current dipoles changes smoothly over its surface, which results in more
realistic forward and inverse solutions.

We then used FSL’s betsurf tool (http://www.fmrib.ox.ac.uk/fsl/) to
define brain/skull (inner skull surface), skull/scalp (outer skull surface)
and scalp/air (scalp surface) boundaries. We ran betsurf once with both
T1w and T2w (for T1w here we used the nu file from the output of
recon-all function) images and once only with T2w image. The two sets
of extracted surfaces were visually inspected for accuracy, and the best
surfaces were selected for further steps. The segmentation was done
only with the betsurf function and no manual editing was applied.

The electrode locations of the 128-channel EGI Sensor Net arrays
were then co-registered to the high-resolution scalp surfaces extracted
from T1-weighted MRIs (using FreeSurfer), using a set of fiducials and a
warping algorithm, using in-house Matlab code distributed in the mrC
toolbox (https://github.com/svndl/mrC).

We then estimated individual forward models using the Boundary
Element Method (BEM) implemented in the MNE-Suite toolbox (http://
www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php).
The forward models were estimated based on the three surfaces (brain/
skull, skull/scalp and scalp/air), cortical source meshes, and co-regis-
tered electrodes locations. The forward model linearly links the current
dipoles located on the 20,484 vertices of the cortical meshes to the EEG
signal recorded at the 128 electrodes on the scalp. As a result, the
forward solution can be written in a form of a transformation matrix
with source number X sensor number dimensions. For more details of
our forward modeling approach refer to (Cottereau et al., 2012, 2015).

2.2.3. ROI definitions
We make two sets of functionally and anatomically realistic regions-

of-interest (ROIs) available in our simulation package. The first consists
of a set of 25 topographically organized visual ROIs derived from a
probabilistic atlas (Wang et al., 2014). This atlas was generated by

using retinotopic mapping procedures to define 25 topographically
organized ROIs covering 22 bilateral visual field maps in ˜50 individual
participants. Each participant’s cortical surface was standardized using
icosahedral tessellation and projection (Argall et al., 2006), followed by
an assessment of the likelihood across participants of any particular
vector on the standardized surface belonging to a particular ROI (Wang
et al., 2014). The atlas was defined using a maximum probability ap-
proach, which considers a given vector as part of the set of ROIs if it is
more often found within the set, than outside the set, across partici-
pants. If this is the case, the vector was assigned the value of the most
likely ROI, and if not, it was considered to be outside the set of ROIs.
The maximum probability approach captures much of the overall
structure of ROIs defined for individual participants and generalizes
well to novel participants who did not contribute to the atlas generation
(Wang et al., 2014). The atlas is publicly available at http://scholar.
princeton.edu/sites/default/files/napl/files/probatlas_v4.zip. We con-
verted the ROIs from standardized surface space to an individual sur-
face space for each of our participants using nearest-node interpolation
implemented in the AFNI’s SurfToSurf function (https://afni.nimh.nih.
gov/). This function interpolates two surfaces assuming the surfaces
have similar shape but different meshes. This interpolation is done by
projecting each node (N1) and its normal from the first surface to the
other surface, finding the triangle on the second surface that is inter-
sected by this projection. The node in this triangle that is closest to the
node N1 is the output of interpolation. We then used surface-based
clustering to eliminate vertices more than 1 edge removed from the
main cluster of each ROI, to ensure that all ROIs consisted exclusively of
contiguous vertices. This step eliminated small speckles, while having
minimal effect on the overall structure and extent of the ROIs. Finally,
the ROIs were down-sampled to match the 20,484-vertex surface mesh
used for source generation/localization.

The second set of ROIs consisted of 180 ROIs that together con-
stitute a parcellation of the entire cerebral cortex, thus offering the user
the ability to simulate activity outside of visual cortex using a set of
ROIs that have a more realistic basis than parcellations made arbitrarily
or based purely on cortical anatomy. The ROIs were defined using a
multi-modal machine-learning approach that identified sharp changes
in cortical architecture, function, connectivity, and/or topography
across a group of 210 healthy young adults from the Human
Connectome Project (Glasser et al., 2016). The parcellation is publicly
available at https://figshare.com/articles/HCP-MMP1_0_projected_on_
fsaverage/3498446/2. We used a version of the parcellation that had
been projected onto Freesurfer’s fsaverage standard surface and then
used Freesurfer’s mri_annotation2label and mri_surf2surf functions to
convert the annotation files to files in which integer values at each
surface vertex indicated ROI membership, converting the resulting files
to the native space of each participant. The resulting. mgz files were
finally converted to gifti format using Freesurfer’s mris_convert func-
tion, which were then down-sampled to match the 20,484-vertex sur-
face mesh used for source generation/localization.

2.3. Simulation of brain signals and scalp EEG recordings

Brain activity is modeled as the linear superposition of task- or
stimulation-related signal activity s t( ) and task- or stimulation-un-
related background activity s t( )n . s t( ) and s t( )n are projected from
source space to channel space by the subject-specific forward model A.
At the channel level, extra-cranial noise is added as a further noise
component. The details of signal and noise models are presented in the
following.

2.3.1. Signal modeling
In the current version of the framework, two different types of signal

are implemented: narrow-band steady state evoked potentials (SSEP)
and a multivariate autoregressive model (MAR) used to model the ac-
tivity of two or more linearly interacting ROIs. Signals can be assigned
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uniformly to either all source vertices (indexed by in a desired region of
interest, or to a subset of vertices located in the center of that ROI,
where the size of ROI can be defined by the user (as the number of
vertices or the surface area). The signal can also be placed with a spatial
normal distribution centered at the centroid of the ROI with the stan-
dard deviation equal to maximum distance of vertices within ROI from
the centroid.

SSEP modeling: Steady state evoked potentials are modeled as the
superposition of sinusoidal waves corresponding to the first H harmo-
nics h of the fundamental frequency f ( =h 1) as

= +
=

s t a hft( ) cos(2 )k

h

H

h
k

h
k

1 (1)

Each harmonic component is defined per ROI by its amplitude ah
k

and phase h
k.

MAR modeling of interacting ROIs: Auto regressive models are
widely used to generate EEG data in simulation studies of functional
connectivity analysis methods (Pascual-Marqui et al., 2014; Stokes and
Purdon, 2017). Multivariate AR models (MAR) support simulation of an
ROI’s internal dynamics and linear interactions between ROIs. This
makes MAR a first-order approximation model for the dynamics of
brain functional networks. Previous simulation studies usually provide
one specific example for this class of signal models, while here we
provide a more flexible framework where the user can define the

number of interacting nodes (ROIs), external input signals, their in-
ternal dynamics and interactions between them. The general form of
MAR model can be defined as
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Where K indicates the number of the nodes within the network, T is the
order of the MAR model and A is a KxKxT matrix indicating the AR
coefficients of the system and tw ( )k is the additive noise of the system.

ts ( )k is the realization of the activity of node k at time t .
MAR model parameter estimation. The matrix A, i.e. the coeffi-

cients of MAR model, needs to be estimated based on the desired be-
havior of the system. The diagonal of matrix A indicates the internal
dynamics of the nodes, for example for node k the vector

…a a T[ (1) ( )k k k k, , ] indicates its behavior. To generate oscillatory activity
for a node, the roots of VAR(1) (or state space) model of this vector

Fig. 1. Example realizations of different noise processes. Left column: Time course of EEG noise signal from an occipital electrode (electrode 29 of EGI system).
Right column: Amplitude spectral density of EEG noise signal, calculated over 30 s of simulated noise and averaged over all electrodes. The 1/f and α activities are
projected onto channel level using the forward solution.
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need to be complex conjugate (Stokes and Purdon, 2017). In our im-
plementation, one or two oscillatory activities for each node are al-
lowed. The off-diagonal coefficients of matrix A, indicate the interac-
tion between the nodes. In our implementation, we allow different
kinds of linear interactions implemented by FIR filters: high-, low-,
band-pass and band-stop. The user can indicate the type of filter, the
cut-off frequency(ies) and filter order and gain. The off-diagonal of
coefficients of the matrix are then estimated using the MATLAB signal
processing toolbox.

For the model to be stable, we only allow feed-forward networks. If
feedback dynamics were allowed it might lead to divergence of the
system and some non-linearity like normalization is required (Tsai
et al., 2012). To simulate feedforward networks, only the upper or
lower triangle of matrix A needs to be estimated and the other should
be set to zero.

An example of this type of signal, with three interconnected nodes is
presented in the Section 3.3.

2.3.2. Noise modeling
In the current version of the framework, we have modeled the

background activity of the brain using 1/f-activity (or pink noise) and
-activity. Sensor noise is modeled at the channel level as an additive
white Gaussian noise. Examples of the simulated activity are presented
in Fig. 1.

1/f-activity: Spectrally pink components of neural background ac-
tivity are modeled for all source nodes by spatially coherent 1/f noise.
For this, temporally and spatially uncorrelated white Gaussian noise is
filtered to have power spectral density of 1/f. Spatial coherence is im-
posed per frequency band (delta, theta, alpha, beta and gamma) to the
resulting signal s t( )f1/ . To obtain a realistic model of spatial coherence,
the decay with spatial distance is modeled using the spatial coherence
measured by intracranial recordings (Kellis et al., 2016) per frequency
band. The coherence dependence on spatial distance is presented in
Fig. 2 for each frequency band.

-activity: To simulate activity in the -band, a white Gaussian
noise signal is filtered using a 3rd-order Butterworth filter with a lower
cutoff frequency of 8 Hz and a higher cutoff frequency of 12 Hz. The
resulting signal s t( ) is assigned to the source vertices of all visual ROIs
of Wang atlas in a spatially uniform fashion. These ROIs includes pri-
mary visual cortex, dorsal, ventral and lateral streams (In sum 25 ROIs
in each hemisphere).

Sensor noise: At the channel level, sensor noise t( ) is modeled as
spatially and temporally uncorrelated white Gaussian noise.

The noise activities are combined at the channel level. For this,
activities that are defined at the source level (1/f-activity s t( )f1/ and

alpha-activity s t( )) are projected to channel space using the subject-
wise forward model A with

=x Ast t( ) ( ) (3)

and

=x Ast t( ) ( )
f f
1 1

(4)

leading to the channel space representation of 1/f-activity x t( )1/f
and -activity x t( ). The total noise activity at channel level is calcu-
lated as the sum of the three noise components, weighted by the noise
parameters , , .
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where F denotes the Frobenius norm over all channels. In order to
have realistic noise- power ratios, the noise parameters are estimated
using empirical data as described in the following section.

Noise parameter estimation. To set the parameters , , in
formula 5, we used a large resting state EEG dataset. The dataset con-
sisted of EEGs of 60 participants, from 20 to 81 years of age
(45.9 ± 16.2, mean ± standard deviation, and 33 females) recorded
during approximately 8min of resting state with eyes closed (REC) and
8min of resting state with eyes open (REO), using an ANT 64 channel
EEG system (ANT Neuro b.v., Enschede, The Netherlands). For more
details of the dataset see (Knyazeva et al., 2018).

The EEG spectrum of the REC and REO conditions (X f( )REC , and
X f( )REO ) were calculated for each electrode using Fourier transforma-
tion averaged over all electrodes. The same Fourier transformation was
applied to simulated noise components in electrode space (X f( ),
X f( )

f
1 , and X f( )). The noise parameters can be then estimated by

minimization of the mean squared error as follows

= X Xf f, , argmin ( ) ( )
n i

n REC or REO
, , ,

2

(6)

where X f( )n can be calculated with the same as formula (5), where
x t( ), x t( )

f
1 , and x t( ) are replaced by X f( ), X f( )

f
1 , and X f( ) ac-

cordingly. After finding the optimal noise parameters, the final noise is
calculated from formula (5).

The simulation framework allows users to select the REC condition
of formula (6), to simulate background activity with high alpha am-
plitude, the REO condition, to simulate background activity with low
alpha amplitude, or define the noise parameters ( , , ) manually.

2.3.3. Combining signal and noise components
To combine signal and noise activities at the channel level, source

signal activity s t( ) is projected to channel signal activity x t( )s with

=x Ast t( ) ( ).s (7)

The simulated noise EEG recording with a chosen signal-to-noise
ratio is then calculated as
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1
1
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s F

n

n F (8)

2.3.4. Multiple epochs and variability
Real EEG recordings are characterized by a high degree of varia-

bility given identical stimulation. This variability may occur on trial-
level or on subject-level. In the simulation framework presented here,
trial-wise variation of the EEG-signal is modeled by the trial-wise re-
draw of the random processes underlying the three noise components

Fig. 2. Decay of spatial coherence in dependence of spatial distance for dif-
ferent frequency bands.
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described in Section 2.3.2. Subject-specific forward models capture
variability at the subject-level by considering individual head ana-
tomies. The noise parameters , , and allow for variability to be
introduced at any level between the trial- and subject-level, because
they can be adjusted per subject or over the course of trials, e.g. based
on a pre-defined rule.

2.3.5. Summary of the simulation pipeline and its parameters
The previous subsections detailed the signal, noise and processing

models underlying the proposed simulation framework. A summarizing
overview over the full signal flow leading to the simulated signal x t( ) is
presented in Fig. 3. The flow diagram also outlines the parameters that
can be set by the user and that influence the behaviour of the different
modules of the simulation pipeline. A summary of the main parameters
with suggested values as used in our application examples can be found
in Table 1. However, with regard to most parameters, e.g. the signal
type, the proposed framework is easily extendable. More details on
parameters and implementation can be found in https://osf.io/fmuae/
wiki/.

3. Examples of simulation framework applications

3.1. Source estimation

Here, we illustrate using EEGSourceSim to compare the perfor-
mance of EEG inverse solutions, using the minimum norm solution
(MN) with and without functional area constrained estimator (MN-
FACE) (Cottereau et al., 2012) as test cases.

3.1.1. Simulation setup and inverse solutions
Forward models of ten subjects from our dataset were selected, and

their MN and MN-FACE inverse solutions were calculated based on a
simulated Steady State Visual Evoked potential data (SSVEP). MN is a
standard approach to solving the EEG source reconstruction problem. In
order to solve the ill-posed inverse solution, MN uses Tikhonov reg-
ularization to produce a spatially smooth source current density solu-
tion with minimum power (Tikhonov and Arsenin, 1977; Grech et al.,
2008). The MN-FACE, introduced by (Cottereau et al., 2012), improves
reconstruction accuracy of MN by adding functional area constrains. To
evaluate the accuracy of the two inverse solutions, we first calculated
resolution matrices for each inverse solution and each subject. A

Fig. 3. EEGSourceSim pipeline overview. The lower row of the figure indicates the main modules of the pipeline in source and channel space. The upper row of the
figure indicates the parameters that the user needs to provide for each module of the pipeline.

Table 1
Summary of the input parameters, and the suggested values for each.

Parameter Description Suggested values

Signal Type Description of signal time course SSEP or MAR (see Sec. 3)
SignalSF Sampling frequency of the simulation 100 Hz
ROIs A list of ROIs to be used as nodes with active signal Two sets of example-specific ROIs (see Sec. 3)
Subject list A list of subject IDs to be used in simulation All available 23 subjects
-Band Frequency band of -activity 8 Hz to 12 Hz
-ROI Set of indices of alpha active nodes All visual ROIs of Wang atlas
Spectral Range Set of frequencies bin indices to normalize over Normalization over [0 SignalSF/2]; Normalization of signal frequency bins

(Sec. 3.3)
Spatial Range Normalize in source space over all ROIs, or active ROIs, or in channel space

over all channels
Normalization over all channels (Sec. 3.3)

Noise Power Ratio A structure with power ratio between different noise sources ( , , ) in
formula (5)

Calculate based on real resting state EEG data

Signal-to-Noise Ratio Real number, in formula (8)
× SignalSF

1
2

, appropriate for SSEP signal
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resolution matrix is calculated by multiplying forward matrix by in-
verse matrix, and it captures the relationship between the true and
estimated source current densities. If an inverse solution is ideal, the
resolution matrix should be an identity matrix, and if the inverse so-
lution has high error, the non-diagonal elements of resolution matrix
are non-zero (Pascual-Marqui et al., 2002).

We then selected a number of visual ROIs from the Wang atlas,
including dorsal (V1d, V2d, V3d, V3A, V3B, TO1, LO1) and ventral
(V1v, V2v, V3v, VO1, hV4) visual areas (Fig. 4). Simulated EEG signals
(at one time point) were generated for each of these ROIs, one at a time,
by assigning ones to the current source densities within that ROI, while
keeping the rest of current source densities at zero. These current
densities were then multiplied by the resolution matrices to estimate
the reconstructed source current densities.

3.1.2. Evaluation metrics
We provide several metrics for evaluating the quality of inverse

solutions:

• A cross-talk matrix is estimated as the reconstructed current density
of ROIs (receiver ROIs) when only a specific ROI (seed ROI) is active
in original current source density. A perfect reconstruction will re-
sult in a diagonal cross-talk matrix, with one on the diagonal and
zeros of the diagonal.

• A Relative Energy metric indicates the ratio of energy in the sources
of the activated ROI to the energy in all sources. This value can vary
between zero (totally false reconstruction) and one (perfect re-
construction).
• An Area Under Curve (AUC) metric is calculated using the Precision
Recall curve (PR). When the data is imbalanced, that is the number
of actual negatives is much higher than the actual positives, PR is a
more informative assessment curve than other alternative receiver
operating characteristics (Saito and Rehmsmeier, 2015). Precision
or positive predictive value (PPV) is calculated as the ratio of true
positives to all detected positives i.e. what ratio of detected positive
are actually correct. Recall or true positive rate (TPR) is the ratio of
true positives to actual number of positives, i.e. what proportion of
actual positives was detected. In the context of source estimation,
PR is calculated by thresholding the estimated normalized source
energies and indicates what proportion of detected active sources
are actual active sources. If the reconstruction is ideal, AUCPR is
one.
• A Focalization Error metric calculated as the normalized re-
construction error of the active ROI current, calculated by mean
squared error.

The implementation of the cross-talk, relative energy and
Focalization Error metrics is detailed in (Cottereau et al., 2012, 2015).

Fig. 4. Source estimation example. The eight selected ROIs are
presented in the upper two rows on uninflated (upper) and inflated
(lower) left hemisphere cortical surfaces with dorsolateral (left)
and ventromedial views (right). Note that the inflated surface re-
presentation was not used for simulation, but is included here
because it makes it possible to see the full extent of all ROIs. The
bottom row presents the cross-talk matrices for two inverse solu-
tions. The ROI names are color coded according to the surface
maps. The red asterisks on each of cross-talk matrices, indicate
which solution has significantly lower cross-talk compared to the
other inverse solution (paired t-test, p < 0.01).
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3.1.3. Example results for source estimation
Results of source estimations using MN and MN-FACE solutions

averaged over 10 subjects are shown in Figs. 4 and 5. Fig. 4, top shows
the eight visual ROIs used in the simulation on uninflated and inflated
cortical surfaces. The uninflated surface accurately presents the cortical
anatomy and 3D geometry of the ROIs, while the inflated surface makes
it easier to visualize each ROI’s continuous coverage of the cortical
surface. The cross-talk matrices for the MN and MN-FACE methods are
shown at the bottom of Fig. 4. To compare the cross-talk matrices of
pairs of inverse solutions over subjects, we applied a paired t-test to
each element of the matrices.

Here, the MN inverse solution showed lower cross-talk in many
elements of the matrix. These differences are caused by FACE constraint
imposed on the MN solution. We note that this apparently weaker
performance is likely due to the fact that applying the FACE constraint
results in more signal power being attributed to visual areas, which in
turn increases the likelihood of cross-talk between them. To compare
the performance of the two inverse solutions more accurately, we
should thus also consider the source estimation errors over the whole
cortex.

On all of the three other metrics, which capture errors across the
whole cortex, the MN-FACE solution outperformed the MN solution, as
can be seen in Fig. 5. Paired t-test were used to compare the AUCPRs,
relative energy and focalization error of MN and MN-FACE solutions for
each ROI simulation. In this example, the AUCPR estimated with MN-
FACE was significantly higher in all ROIs (p<0.001) compared to MN.
The Relative Energy estimated with MN-FACE was higher in most of the
ROIs (p < 0.05), except for some dorsal ROIs (V1d, V2d, V3A and
V3B). The Focalization Error was significantly lower for MN-FACE than
for MN in all ROIs (p < 0.001).

The simplified example presented here considers only two inverse
models and a small number of simulated sources. However, the

simulation framework can be used to compare any inverse solution
using the set of evaluation metrics provided. We simulated one ROI at a
time in this example, but users can also study cancellation or mixing
effects by placing active sources in multiple ROIs at the same time. The
20-participant dataset can also be used to evaluate the effects of in-
dividual variability and ROI variability on source estimation such as the
effects of depth, orientation, source extent, etc). Finally, it is important
to emphasize that the simulation presented here used a static model, i.e.
only considering a single time point. The static approach does not
consider signal dynamics, and is indifferent to noise, but a more rea-
listic evaluation of source estimation can be achieved using the dy-
namic modelling of signal and noise provided by our framework.

3.2. Functional connectivity analysis

In this section we demonstrate how to assess different approaches to
functional connectivity analyses using the EEGSourceSim framework.
For this purpose, we use a comparison of two commonly used func-
tional connectivity measures, weighted phase-locking index and ima-
ginary coherence under different SNR levels.

3.2.1. Simulation setup
Spontaneous EEG data was simulated at a 300 Hz sampling fre-

quency and 2 s epoch length. The source signals were generated using
an MAR model. The model consisted of three interconnected ROIs:
dorsal V1, dorsal V3, and TO1 each located in the left hemisphere. The
location of these ROIs is shown in the top left part of Fig. 6, and the
connectivity graph used for the simulation is shown in the bottom left
part. We selected these ROIs because they had low source estimation
errors and cross-talk values in the previous example (see Fig. 5).

The signal that was placed in V1d had internal dynamics comprised
of lower (8 Hz) and higher frequency (20 Hz) broadband oscillatory

Fig. 5. AUCPR, relative energy, and focalization error of MN and MN-Face inverse solutions. ROIs are color coded according to Fig. 4. Asterisks indicate significant
differences between MN and MN-FACE results (paired t-test p < 0.01).
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activity. These oscillations were propagated to other ROIs through two
paths. The first path was simulated as a high pass FIR filter (cut-off
frequency of 13 Hz) from V1d to TO1 where only the 20 Hz oscillation
was transferred through it. The other path consisted of a connection
from V1d to V3d via a low-pass FIR filter (cut-off frequency of 13 Hz),
where only the 8 Hz oscillation was passed through, followed by a
connection from V3d to TO1 after a delay. The result was that the low
frequency oscillation was transferred through an indirect path from V1d
to TO1. This network configuration reflects known properties of the
visual pathway (Ponce et al., 2008).

Ten subjects were selected for this simulation and EEG signals
were generated at different SNR levels
( {0.003, 0.01, 0.0316, 0.1, 0.3162, 1.0, 3.1623, 10.0}, which re-
sulted in SNRs ranging from -25 to 10 dB in 5 dB steps). SNR was
defined at the single trial level based on the broad band frequency
range (5 to 25 Hz). For each SNR level and subject, 15 two-second
epochs of EEG signal were generated.

3.2.2. Functional connectivity measures
To estimate source functional connectivity, we first estimated the

source signal using an inverse solution and then computed the func-
tional connectivity between the different ROIs. This approach of EEG
source functional connectivity analysis has been widely used by re-
searchers (Astolfi et al., 2004; Babiloni et al., 2005; Barzegaran et al.,
2016), for review see (Schoffelen and Gross, 2009; Barzegaran and
Knyazeva, 2017). To minimize source estimation errors, the source
signal was estimated by the MN-FACE inverse solution. Two commonly
used functional connectivity measures, (1) the imaginary part of co-
herence, ICoh (Nolte et al., 2004) and (2) the Weighted Phase Lagged
Index, WPLI (Vinck et al., 2011) implemented in the Fieldtrip toolbox
(Oostenveld et al., 2011) were applied to estimate the connectivity
between the ROIs. ICoh is calculated as the imaginary part of the cross-
spectrum of the two signals, and is known to be unaffected by volume

conductance of independent sources. WPLI is estimated based on the
distribution of relative phase of the two signals. If one signal leads or
lags the other, the WPLI index will be high. WPLI weights the con-
tribution of the phases by the magnitude of imaginary component of
cross spectrum to decrease the sensitivity to noise and volume con-
duction. These two measures are minimally affected by volume con-
duction and outperform many other FC measures such as coherence or
PLV (Gordon et al., 2013; Van Diessen et al., 2015). The values of ICoh
and WPLI both vary between zero and one, where one implies max-
imum synchronization and zero means no synchronization.

3.2.3. Evaluation metrics
We compared the source functional connectivity estimates of ICoh

and WPLI at different SNR levels. The metrics for evaluation of func-
tional connectivity analysis were defined according to (Palva and Palva,
2012)

• To visualize the detected network, we generated an ROI con-
nectivity matrix that determines the strength of estimated functional
connectivity between ROIs.
• To determine the proportion of detected connections that are actual
functional connection, we calculated AUC using the Precision-Recall
curve (AUCPR) as in the source localization example, but here based
on thresholded ICoh and WPLI connectivity matrices, rather than
normalized source energies.

3.2.4. Example results for functional connectivity estimation
Connectivity matrices for ICoh and WPLI are shown in Fig. 7 top left

and top right, respectively. The three active ROIs are indicated by the
color codes. As can be seen, there is substantial spurious connectivity
outside of the simulated ROI for both measures. To allow reliable sta-
tistical comparison of WPLI and ICoh, we estimated standard errors of
the AUROC for each connectivity measure by Monte Carlo simulation

Fig. 6. Network model and the resulting MAR signals used for a functional connectivity analysis simulation. In the upper left, the three left hemisphere ROIs are
shown on an example brain. In the lower left, the network structure, which created the MAR input is presented with the nodes color-coded as in the ROIs. On the
right, the amplitude spectral densities of the ROI signals are presented.
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over the simulated EEG data (80 draws for each SNR level, where for
each draw we selected 75 trials over all subjects). The AUROC results,
shown at the bottom of Fig. 7 indicate that overall, WPLI performed
better than ICoh in the detection of true positives. As SNR increases
from very low values (from -25 to -10 dB), the performance of both
measures improves. However, after -10 dB, as the SNR level increases,
the performance of the two connectivity measures deteriorates, and
they detect a large number of false positives. Palva et al. (2018) has
shown that false positive or ghost FCs are detected even with methods
that are resilient to direct effects of volume conduction, such as WPLI.
This happens due to field spread in the vicinity of true interactions. In
our simulation, as the SNR level increases, cross-talk has a stronger
effect on the propagation of signals into the other ROIs which results in
higher false positive rates and therefore worse performance. A similar
effect has been observed previously (Barzegaran and Knyazeva, 2017).

In this section, we have presented a simple example simulation of
functional connectivity analysis based on source-level EEG with three
linearly interacting sources. However, the framework can also be used
to study more complex network structures, including whole brain net-
works using the Glasser et al (Glasser et al., 2016) atlas and more
complex MAR model or nonlinear models. More complex signal mod-
eling can be incorporated within the simulation framework by mod-
ifying the signal of interest that is input to the framework. As the fra-
mework generates simulation data at both source and sensor levels, it
can be used to compare functional connectivity and other estimates of
connectivity at both levels.

3.3. Spatial filters

In our third example we show how EEGSourceSim can be used to
evaluate linear spatial filtering by comparing three different methods:
Principal Component Analysis (PCA), Spatio-Spectral Decomposition
(SSD) (Nikulin et al., 2011), and Reliable Component Analysis (RCA)
(Dmochowski et al., 2015). We show how a plausible simulation of
steady-state evoked responses at different levels of SNR can guide
method selection.

3.3.1. Spatial filter simulation setup
We illustrate the evaluation of spatial filters with a simple example

that modeled two SSVEP source signals located in distinct visual ROIs.
Each source signal comprised of two sinusoids at 2 Hz (the nominal first
harmonic of the SSVEP signal) and 6 Hz (the third harmonic of the
SSVEP signal). For the first source (S1) amplitudes were constant over
trials ( = =a a2, 1.5S S

1
1

3
1 , where a S

1
1 indicates the amplitude of the first

harmonic in source S1 and a S
3

1 is the amplitude of the third harmonic)
with no phase shift ( = = 0S S

1
1

3
1 , where S

1
1 indicates the phase of the

first harmonic in source S1 and S
3

1 is the phase of the third harmonics).
The S1 signal was placed at source-mesh vertices corresponding to the
dorsal sub-division of visual area V2 in the right hemisphere (V2d-R).
The second source signal (S2) was set in quadrature to the first source
signal ( = = /2S S

1
2

3
2 ) with its amplitudes being sampled per trial

from a standard uniform distribution ( = =a a aS S
1

2
3

2 with a U (0,1)).
The S2 signal was placed at source-mesh vertices corresponding to the

Fig. 7. Connectivity matrices (top) and AUCPR estimates (bottom) for ICoh and WPLI at 8 Hz and at different SNR levels. The upper row shows the connectivity
matrices for ICoh and WPLI at SNR= -15 dB. The colorbar indicates the normalized estimated connectivity strength. The matrix elements marked with green frames
indicate the gold standard FC elements. The simulated FC at this frequency was present between V1d and V3d, and V3d and TO1. The lower row plots the mean
AUCPR of Icoh and WPLI, with standard error of mean presented as error bars. The stars indicate significant differences between ICoh and WPLI results (paired t-test
p < 0.01).
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dorsal-lateral area LO1 in the left hemisphere (LO1-L). The SSVEP
signals were simulated over a range of SNRs
( {0.01, 0.0316, 0.1, 0.3162, 1.0, 3.1623, 10.0}, corresponding to
SNR values in the range from -25 to 10 dB in 5 dB steps) for the same
subset of ten subjects used in previous examples. These SNR values
were calculated in sensor space, i.e. the source and noise signals were
first projected into sensor space separately by multiplying their source-
space signal by the forward matrix (see Eq. 8). The SNR is then defined
as the ratio of average source-signal power in the first and third har-
monic frequency bins to the average noise power in the respective side-
bins of the first and third harmonics over all electrodes. For each sub-
ject and SNR level, we simulated the SSVEP signal with 200 2-second
trails and sampling frequency of 100 Hz.

3.3.2. Spatial decomposition methods
PCA is a classical technique to decompose a multidimensional signal

into decorrelated components. The decomposition transform is found
under the constraint of maximal energy (or variance) compactness of
the signal and results in an orthogonal basis set. RCA decomposes the
signal into its components based on the assumption of trial-to-trial re-
producibility (Dmochowski et al., 2015). This leads to a generalized
eigenvalue problem and, as such, to potentially non-orthogonal com-
ponents. SSD assumes the signal to be of spectrally disjoint signal and
noise components, as for the RCA, leading to a generalized eigenvalue
problem (Nikulin et al., 2011).

3.3.3. Example results for spatial filtering
The simulation framework provides ground truth information for

the SSVEP signals that would be recorded in a hypothetical noise-free
situation. By adding noise to the signal, we can quantitatively evaluate
how effective different decomposition techniques are in recovering the
neural source signal and the lead fields (scalp topographies) of the
known sources.

The lead fields of the two visual ROIs used in this simulation are
shown in the leftmost column of Fig. 8. S1 was located in the V2d-R and
had constant amplitude. This source generates an approximately ellip-
soidal horizontal topography located roughly over O2. S2, located in
LO1-L was amplitude-varying and exhibits an ellipsoid topography ro-
tated by about 45 degrees, centered approximately between P3, P7 and
O1. The recovered scalp topographies are shown in Fig. 8 for the first
two components derived from the PCA, RCA and SSD approaches over
the range of varied SNR. At low SNRs (-20 dB, -15 dB, -10 dB), PCA is
unable to recover a topography resembling any of the lead fields of the
two sources. As SNR increases (-5 dB and higher), the amplitude-con-
stant source (S1) starts to emerge in the first PCA component. However,
it only detects the S2 source at SNRs higher than 5 dB. Contrary to PCA,
RCA can successfully detect S1 in its first component under all SNR
values and SSD detects it with SNRs higher than -20 dB. The second
source S2 emerges in the second component of RCA and SSD as the SNR
value increases (-5 dB for RCA and -10 dB for SSD).

To quantitatively assess the performance of the three spatial filters,
we employ three evaluation metrics previously used to asses spatial
filters (Cohen, 2017).

• Angular Error indicates how much the spatial filter topography
resembles the lead field (scalp topography) of the activated source.
It is calculated as

=Angular error rcos (| |)1

Where r is the correlation coefficient between the filter topography and
the source lead field. Its value ranges from 90° (maximum topography
difference) to 0° degrees (equal topographies).

• Normalized Residual shows how well the filtered signal matches
the original signals put in the ROIs (signal fitting). It is calculated as
one minus the square of correlation coefficient ( R1 2) of the

component signal and the original signal. Its value varies from 0
(maximum fit) to 1 (no signal fitting).
• Reconstruction SNR is calculated as the SNR of the filtered signal
at the frequency of the SSVEP harmonics. This metric indicates how
successful the spatial filters are in increasing the SNR of EEG. Here,
we calculated it with the same approach as the input SNR and
converted it to dB (10log10).

In order to have reliable estimation of the evaluation metrics, we
used a Monte Carlo simulation, where for each subject we drew 40
samples each consisting of 20 trials selected randomly (with replace-
ment) from the original set of 200 simulation trials. The spatial filters
and evaluation metrics were calculated separately for each sample and
then averaged over 40 samples.

Fig. 9, top row shows the Angular Error calculated between the
topographic maps of the first two components of each spatial filtering
method and the lead field of the two source lead fields that were pre-
sented in Fig. 8. For each spatial filter, the first component had the
lowest angular error with the first source (S1) lead field, and the second
component had the lowest angular error with the second source (S2)
lead field. Therefore, to simplify the figure, we only present the Angular
Error of the first component relative to S1 and Angular Error of the
second component relative to S2. Among the three spatial filters, PCA
has the highest angular error over all SNR values and for both com-
ponents. Even though RCA and SSD have much lower error than PCA
and perform closely in terms of angular error, RCA has lower error than
SSD at small SNR values.

In terms of Normalized Residuals and for the first component, RCA
and SSD perform equally, while PCA has higher residual values. For the
second component, the performance of the RCA and SSD does not differ
significantly from each other, and PCA has slightly worse performance
than the others. For the three methods, residuals of the second com-
ponents are each worse compared to their respective residuals of the
first component.

Finally, the reconstruction SNR of SSD and PCA show similarly
shaped functions of SNR, with the SSD curve being shifted upwards by
about 15 dB. The RCA reconstruction SNR, by contrast is a linear
function of input SNR. For the second component the reconstruction
SNR functions increased slower with increasing input SNR and were
higher than 0 dB for PCA and RCA only for the input SNRs higher than
0 dB. SSD appears to have a bias that can be seen at low SNR that is not
shared by the other methods.

In this section, we presented a simulation example for assessing
three spatial filtering methods. We evaluated the ability of these spatial
filters to decompose two SSVEP signals placed in different visual ROIs,
under different SNR values. Beyond this simple demonstration example,
EEGSourceSim can be used to assess and validate spatial filters under
different assumptions such as the magnitude of trial-to-trial variability,
individual variability or in presence of outliers or various artifacts. By
varying the number and locations of SSVEP sources, a more generalized
assessment of the filters could also be obtained or filters for particular
known sources could be evaluated.

4. Discussion

Here we introduce EEGSourceSim, a realistic EEG simulation fra-
mework that incorporates individually-defined forward models, func-
tionally meaningful regions of interest and realistic models of signal
and noise. These features of our framework provide greater realism for
simulation of scalp EEG signals compared to existing toolboxes. In ad-
dition, we provide a general framework that can be used for the eva-
luation and validation of a wide range of methods used in EEG analysis.
As potential applications, we presented examples for source estimation,
functional connectivity analysis, and spatial filtering evaluation. A
major advantage of our framework is the fact that it can be used to
evaluate different analysis pipelines instead of focusing on one specific
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analysis technique/pipeline. This level of integration is important be-
cause some pipeline elements – source estimation and functional con-
nectivity being a key example – are often used in conjunction.

An important feature of our simulation framework is the in-
corporation of a large data set of individually-defined forward models
(23 participants). Existing simulation toolboxes/studies have estimated
the EEG forward model based on average head models (Haufe and
Ewald, 2016; Krol et al., 2018) or a single or small number of individual
head models (Ahlfors et al., 2010b) for estimating the EEG forward
model. Using individual forward models for simulating EEG data is
beneficial for a number of reasons. Several studies have indicated
higher accuracy of individual head models compared to average head
models. For example, Henson et al. (Mattout et al., 2007; Henson et al.,
2009) have shown that BEM forward models calculated based on in-
dividual head models have higher accuracy than those calculated using
template brains and spherical head models. It is important to note that
BEM can be used to improve the accuracy of template-based forward
models, as demonstrated by (Darvas et al., 2006; Valdés-Hernández
et al., 2009) who used a template calculated by non-linear averaging
MRIs from 152 adult humans (ICBM152) (Fonov et al., 2011). More
recently, Huang et al (Huang et al., 2016), used another approach, the
Finite Element Method (FEM) to create a forward model based on
ICBM152. They showed that the FEM model performs better on source
localization and transcranial electric stimulation (tES) targeting than a

BEM model based on the same ICBM152 template. However, the BEM
and FEM forward models of template brains fall behind the forward
models calculated based on the individual brains, in terms of source
localization and tES targeting (Huang et al., 2016).

In addition, substantial individual differences in cortical geometry,
skull thickness, and the shape of the volume conductor can drastically
affect EEG forward and inverse modeling (Von Ellenrieder et al., 2009;
Ahlfors et al., 2010b, 2010b). The result is that activity in a specific
brain region may result in different scalp topographies and signals
across individuals. Accounting for these individual variabilities is es-
sential for evaluation of EEG analysis methods such as source estima-
tion and spatial filtering and this cannot be achieved using average
head models. Our large dataset of forward models thus provides more
realistic EEG simulations at the individual level and also allows re-
searchers to evaluate methods in the presence of individual variability.

In studies of brain function, a basic assumption is that specific re-
gions of the brain are active and accordingly, simulations should be
based on functional ROIs, rather than arbitrary dipoles or parcellations.
Because of this, we provide functionally and anatomically defined ROIs
for each individual that can be used for designing more realistic source
distributions that are functionally meaningful and that can be tailored
to the user’s research question. Our approach thus contrasts to those of
previous simulation toolboxes that generate synthetic EEG by placing
dipoles on the cortical surface or in the gray matter volume with

Fig. 8. Spatial filter topography maps of three decomposition techniques. The left most column presents the lead fields corresponding to source 1 (V2d-R) and source
2 (LO1-L) averaged over 10 subjects (Normalized to have values between 0 and 1). The normalized topographic maps of each filter for their first and second
component are presented (averaged over 10 subjects and trials) over different SNR values (each SNR value is presented in one row) are shown in the second to sixth
columns.
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arbitrary location and extents. For example, Haufe et al. (Haufe and
Ewald, 2016) divided the brain into eight octants and placed their
signal as dipoles located randomly within two of these octants. Even
though this simulation can satisfy assumptions needed for some meth-
odological assessments, it does not resemble realistic brain activity and
therefore the generalization of the assessments to real EEG data might
not be valid. In other simulation studies (Sohrabpour et al., 2016;
Barzegaran and Knyazeva, 2017; Krol et al., 2018), the signal was
placed manually or in randomly selected dipoles with specific size
without taking the underlying functional ROIs into account.

In addition to the unique anatomical dataset (individual forward
models, cortical meshes and ROIs), we provide a realistic approach to
implementing the dynamics of the EEG signal. Our noise model consists
of various elements that each simulate noise generated by biological or
measurement sources. Coherent pink noise is a biologically plausible
model for simulating the brain’s background activity which we fitted on
the basis of human intracranial recordings (Kellis et al., 2016). In
previous simulation studies, the brain’s background activity is usually
simulated using either using incoherent white noise (Pascual-Marqui
et al., 2014; Barzegaran et al., 2016) or incoherent pink noise (Haufe
and Ewald, 2016; Krol et al., 2018). Even though these noise models
replicate the brain’s background activity to some extent, they do not
fully conform to direct measurements of cortical activity, i.e they do not
incorporate the spatial coherence of the pink noise and its frequency
dependency. This is especially important in simulation studies of

functional connectivity analysis, where these frequency-dependent co-
herences might result in frequency-dependent biases in estimation of
FC. Moreover, previous studies usually do not include an alpha noise,
one of the most prominent signals that can be recorded from visual
cortex using EEG, and therefore an essential component for simulating
EEG measurements of visual activity.

In addition, in contrast to previous simulation studies,
EEGSourceSim estimates the noise parameters, the ratio of pink noise,
alpha activity and sensor-level white noise, based on a resting state EEG
data set. This provides users with two sets of noise parameters, that
correspond to EEG collected under high and low alpha conditions that
they can choose between according to their interest. Besides the two
standard sets of parameters, users also have the option to extend the
model by manually selecting parameters that capture the noise en-
vironment expected in their paradigms.

EEGSourceSim provides two main approaches for signal modeling:
deterministic sinewaves and MAR signal models. The deterministic si-
newaves can be used to realistically simulate any sensory SSEP mod-
ality by appropriately selecting ROIs. On the other hand, MAR can
model the activity of one or a network of interconnected ROIs. Based on
the input and the internal dynamics of the ROIs, MAR can generate
spontaneous and/or rhythmic brain activities, such as theta- or beta-
like activity, or activity driven by SSEPs or ERPs. In addition to these
two signal models, EEGSourceSim can take an external source signal
input, such as an ERP model based on experimental data or any other

Fig. 9. Angular Error, Normalized Residuals and Reconstruction SNRs of three spatial filters. The first columns represent the results of the first components of PCA,
RCA and SSD, averaged over subjects and trials. The same results for the second components are presented in the second column.
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signal generated by computational models.
Future directions and possible extensions. In the current version

of the framework, only BEM forward models are available to the users.
Due to identification issues, we are not able to provide original MRI
scans of individuals and the defaced MRI scans cannot be used for head
modeling (Because of the electrodes located on the face). Therefore,
there is a limitation to modify the head models and add additional at-
lases by the users based on current MRI dataset. However, in the future
versions of the framework, more advanced forward modeling ap-
proaches such as the Finite Element Method (FEM) can be implemented
to increase the realism of EEGSourceSim.

As a feature of this open source toolbox, the other modules of this
framework (Fig. 3) can be easily accessed and modified to meet the
user’s requirements. In terms of signal dynamics, there is a large scope
for more realistic signal modeling. More intricate models to simulate
complex functional interactions like cross-frequency coupling can be
added to the signal model. In addition, more detailed computational
models of EEG signal generation such as that provided by the Human
Neocortical Neurosolver (https://hnn.brown.edu) could be used instead
of the relatively simple signals in the present version. Because the signal
modeling is a separate module in this framework, users can use dif-
ferent signal models than the available models and input the generated
signal to the framework. In addition, for noise modeling, users can
modify the noise parameters or add other models of noise to the source
space or sensor space signal according to their requirements.

5. Conclusion

Given the unknown ground truth (underlying cortical sources) of
EEG signals, it is critical to evaluate EEG analysis methods using si-
mulations before applying them to real EEG data. EEGSourceSim pro-
vides a highly realistic simulation environment for evaluating a wide
range of EEG analysis methods. It provides a powerful assessment tool
by taking individual variation into account through the use of in-
dividual forward models, ROIs based on cortical anatomy and function,
and realistic models of signal and noise.
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